2,017 research outputs found

    Evaluation of the RAAPS Risk Screening Tool for Use in Detecting Adolescents With Depression

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102711/1/jcap12060.pd

    Exposure to Crude Oil and Chemical Dispersant May Impact Marine Microbial Biofilm Composition and Steel Corrosion

    Get PDF
    The release of hydrocarbons and chemical dispersant in marine environments may disrupt benthic ecosystems, including artificial reefs, formed by historic steel shipwrecks, and their associated organisms. Experiments were performed to determine the impacts of crude oil, dispersed crude oil, and dispersant on the community structure and function of microorganisms in seawater (SW) and biofilms formed on carbon steel, a common ship hull construction material. Steel corrosion was also monitored to illustrate how oil spills may impact preservation of steel shipwrecks. Microcosms were filled with seawater (SW) and incubated at 4°C. Carbon steel disks (CSDs) were placed in each tank, and tanks were amended with crude oil and/or dispersant or no treatment. SW and CSD biofilms were sampled biweekly for genetic analysis using Illumina sequencing of 16S ribosomal RNA gene amplicons. Predicted and sequenced bacterial metagenomes were analyzed to examine impacts of oil and dispersant on metabolic function. Gammaproteobacteria, Alphaproteobacteria, and Flavobacteriia dominated SW and biofilms. Bacterial community structure differed significantly between treatments for SW and biofilms. OTUs affiliated with known (Pseudomonas) and potential (Marinomonas) hydrocarbon-degraders were roughly twice as abundant in biofilms treated with oil and dispersed oil, and steel corrosion of CSDs in these treatments was higher compared to control and dispersant treatments. OTUs affiliated with the Rhodobacteraceae family (biofilm formers and potential oil degraders) were less abundant in the dispersant treatment compared to other treatments in biofilm and SW samples, but OTUs affiliated with the Pseudoalteromonas genus (biofilm formers and proposed hydrocarbon degraders) were more abundant in dispersant-treated biofilms. Overall, functional gene analyses revealed a decrease in genes (predicted using PICRUSt and observed in sequenced metagenomes) associated with hydrocarbon degradation in dispersant-treated biofilms. This study indicates that exposure to oil and dispersant could disrupt the composition and metabolic function of biofilms colonizing metal hulls, as well as corrosion processes, potentially compromising shipwrecks as ecological and historical resources

    Microbial Functional Responses in Marine Biofilms Exposed to Deepwater Horizon Spill Contaminants

    Get PDF
    Marine biofilms are essential biological components that transform built structures into artificial reefs. Anthropogenic contaminants released into the marine environment, such as crude oil and chemical dispersant from an oil spill, may disrupt the diversity and function of these foundational biofilms. To investigate the response of marine biofilm microbiomes from distinct environments to contaminants and to address microbial functional response, biofilm metagenomes were analyzed from two short-term microcosms, one using surface seawater (SSW) and the other using deep seawater (DSW). Following exposure to crude oil, chemical dispersant, and dispersed oil, taxonomically distinct communities were observed between microcosms from different source water challenged with the same contaminants and higher Shannon diversity was observed in SSW metagenomes. Marinobacter, Colwellia, Marinomonas, and Pseudoalteromonas phylotypes contributed to driving community differences between SSW and DSW. SSW metagenomes were dominated by Rhodobacteraceae, known biofilm-formers, and DSW metagenomes had the highest abundance of Marinobacter, associated with hydrocarbon degradation and biofilm formation. Association of source water metadata with treatment groups revealed that control biofilms (no contaminant) harbor the highest percentage of significant KEGG orthologs (KOs). While 70% functional similarity was observed among all metagenomes from both experiments, functional differences between SSW and DSW metagenomes were driven primarily by membrane transport KOs, while functional similarities were attributed to translation and signaling and cellular process KOs. Oil and dispersant metagenomes were 90% similar to each other in their respective experiments, which provides evidence of functional redundancy in these microbiomes. When interrogating microbial functional redundancy, it is crucial to consider how composition and function evolve in tandem when assessing functional responses to changing environmental conditions within marine biofilms. This study may have implications for future oil spill mitigation strategies at the surface and at depth and also provides information about the microbiome functional responses of biofilms on steel structures in the marine built environment

    Deep Sea Biofilms, Historic Shipwreck Preservation and the Deepwater Horizon Spill

    Get PDF
    Exposure to oil from the Deepwater Horizon spill may have lasting impacts on preservation of historic shipwrecks in the Gulf of Mexico. Submerged steel structures, including shipwrecks, serve as artificial reefs and become hotspots of biodiversity in the deep-sea. Marine biofilms on submerged structures support settlement of micro- and macrobiota and may enhance and protect against corrosion. Disruptions in the local environment, including oil spills, may impact the role that biofilms play in reef preservation. To determine how the Deepwater Horizon spill potentially impacted shipwreck biofilms and the functional roles of the biofilm microbiome, experiments containing carbon steels disks (CSDs) were placed at five historic shipwreck sites located within, and external to the benthic footprint of the Deepwater Horizon spill. The CSDs were incubated for 16 weeks to enable colonization by biofilm-forming microorganisms and to provide time for in situ corrosion to occur. Biofilms from the CSDs, as well as sediment and water microbiomes, were collected and analyzed by 16S rRNA amplicon gene sequencing to describe community composition and determine the source of taxa colonizing biofilms. Biofilm metagenomes were sequenced to compare differential gene abundances at spill-impacted and reference sites. Biofilms were dominated by Zeta-, Alpha-, Epsilon and Gammaproteobacteria. Sequences affiliated with the Mariprofundus and Sulfurimonas genera were prolific, and Roseobacter, and Colwellia genera were also abundant. Analysis of 16S rRNA sequences from sediment, water, and biofilms revealed sediment to be the main known source of taxa to biofilms at impacted sites. Differential gene abundance analysis revealed the two-component response regulator CreC, a gene involved in environmental stress response, to be elevated at reference sites compared to impacted sites within the spill plume fallout area on the seafloor. Genes for chemotaxis, motility, and alcohol dehydrogenases were differentially abundant at reference vs. impacted sites. Metal loss on CSDs was elevated at sites within the spill fallout plume. Time series images reveal that metal loss at a heavily impacted site, the German Submarine U-166, has accelerated since the spill in 2010. This study provides evidence that spill residues on the seafloor may impact biofilm communities and the preservation of historic steel shipwrecks

    The Effect of a Sublethal Temperature Elevation on the Structure of Bacterial Communities Associated with the Coral Porites compressa

    Get PDF
    Evidence points to a link between environmental stressors, coral-associated bacteria, and coral disease; however, few studies have examined the details of this relationship under tightly controlled experimental conditions. To address this gap, an array of closed-system, precision-controlled experimental aquaria were used to investigate the effects of an abrupt 1°C above summer ambient temperature increase on the bacterial community structure and photophysiology of Porites compressa corals. While the temperature treatment rapidly impacted the photophysiology of the coral host, it did not elicit a statistically significant shift in bacterial community structure from control, untreated corals as determined by terminal restriction fragment length polymorphism analysis of 16S rRNA genes. Two of three coral colonies harbored more closely related bacterial communities at the time of collection and, despite statistically significant shifts in bacterial community structure for both control and treatment corals during the 10-day acclimation period, maintained this relationship over the course of the experiment. The experimental design used in this study proved to be a robust, reproducible system for investigating coral microbiology in an aquarium setting

    Primary results of long-term outcomes in the MOMENTUM 3 pivotal trial and continued access protocol study phase: a study of 2200 HeartMate 3 left ventricular assist device implants

    Get PDF
    AIM: The MOMENTUM 3 pivotal trial established superiority of the HeartMate 3 (HM3) left ventricular assist device (LVAD), a fully magnetically levitated centrifugal-flow pump, over the HeartMate II axial-flow pump. We now evaluate HM3 LVAD outcomes in a single-arm prospective continuous access protocol (CAP) post-pivotal trial study. METHODS AND RESULTS: We enrolled 2200 HM3 implanted patients (515 pivotal trial and 1685 CAP patients) and compared outcomes including survival free of disabling stroke or reoperation to replace or remove a malfunctioning device (primary composite endpoint), overall survival and major adverse events at 2 years. The 2-year primary endpoint [76.7% vs. 74.8%; adjusted hazard ratio (HR) 0.87, 95% confidence interval (CI) 0.71-1.08, P = 0.21] and overall survival (81.2% vs. 79.0%) were similar among CAP and pivotal cohorts despite sicker patients (more intra-aortic balloon pump use and INTERMACS profile 1) in CAP who were more often intended for destination therapy. Survival was similar between the CAP and pivotal trial in transplant ineligible patients (79.1% vs. 76.7%; adjusted HR 0.89, 95% CI 0.68-1.16, P = 0.38). In a pooled analysis, the 2-year primary endpoint was similar between INTERMACS profiles 1-2 (\u27unstable\u27 advanced heart failure), profile 3 (\u27stable\u27 on inotropic therapy), and profiles 4-7 (\u27stable\u27 ambulatory advanced heart failure) (75.7% vs. 77.6% vs. 72.9%, respectively). The net burden of adverse events was lower in CAP (adjusted rate ratio 0.93, 95% CI 0.88-0.98, P = 0.006), with consequent decrease in hospitalization. CONCLUSIONS: The primary results of accumulating HM3 LVAD experience suggest a lower adverse event burden and similar survival compared to the pivotal MOMENTUM 3 trial

    Concomitant Valvular Procedures During LVAD Implantation and Outcomes: An Analysis of the MOMENTUM 3 Trial Portfolio

    Get PDF
    Purpose: Correction of valvular pathology is often undertaken in patients undergoing LVAD implantation but impact on outcomes is uncertain. We compared clinical outcomes with HeartMate 3 (HM3) LVAD implantation in those with concurrent valve procedures (VP) to those with an isolated LVAD implant within the MOMENTUM3 trial portfolio, including the Pivotal Trial (n=515, NCT02224755) and Continued Access Protocol/ CAP (n=1685, NCT02892955). Methods: The study included 2200 HM3 implanted patients. Among 820 concurrent procedures (including VP, CABG, RVAD, LAA closure), 466 (21.8%) were VPs (HM3+VP), including 81 aortic, 61 mitral, 163 tricuspid, and 85 patients with multiple VPs. Short and Long-term outcomes including peri-operative complications and healthcare resource use, major adverse events and survival were analyzed. Results: Patients undergoing HM3+VP were older (63[54-70] vs. 62[52-68] yrs), with a sicker INTERMACS profile (1-2:41% vs.31%) and higher central venous pressure (11[8-16] vs. 9[6-14] mmHg) compared to HM3 alone (all p\u3c0.05). The cardiopulmonary bypass time (124[97-158] vs.76[59-96] mins); ICU (8.5 [5-16] vs. 7 [5-13]) and hospital length of stay (20 [15-30] vs. 18 [14-24] days) were longer in HM3+VP (all p\u3c0.0001). A significantly higher incidence of stroke (4.9% vs. 2.4%), bleeding (33.9% vs. 23.8%) and right heart failure (41.5% vs. 29.6%) was noted in HM3+VP for 0-30 days post-implant (all p\u3c0.01), but 30-day survival was similar between groups (96.7% vs. 96.1%). There was no difference in 2-year survival in HM3+VP vs HM3 alone patients (HR[95%CI]:0.93 [0.71-1.21];p=0.60). Analysis of individual VPs showed no significant differences in survival compared to HM3 alone (Figure). Conclusion: Concurrent VPs are commonly performed during LVAD implantation, are associated with increased morbidity during the index hospitalization, but short and long-term survival are not impacted adversely when compared with those that undergo an isolated LVAD procedure
    • 

    corecore