1,250 research outputs found
Quiet Clean Short-haul Experimental Engine (QCSEE) under-the-wing engine composite fan blade design report
A total of 38 quiet clean short haul experimental engine under the wing composite fan blades were manufactured for various component tests, process and tooling, checkout, and use in the QCSEE UTW engine. The component tests included frequency characterization, strain distribution, bench fatigue, platform static load, whirligig high cycle fatigue, whirligig low cycle fatigue, whirligig strain distribution, and whirligig over-speed. All tests were successfully completed. All blades planned for use in the engine were subjected to and passed a whirligig proof spin test
Metal spar/superhybrid shell composite fan blades
The use of superhybrid materials in the manufacture and testing of large fan blades is analyzed. The FOD resistance of large metal spar/superhybrid fan blades is investigated. The technical effort reported was comprised of: (1) preliminary blade design; (2) detailed analysis of two selected superhybrid blade designs; (3) manufacture of two process evaluation blades and destructive evaluation; and (4) manufacture and whirligig testing of six prototype superhybrid blades
Design of impact-resistant boron/aluminum large fan blade
The technical program was comprised of two technical tasks. Task 1 encompassed the preliminary boron/aluminum fan blade design effort. Two preliminary designs were evolved. An initial design consisted of 32 blades per stage and was based on material properties extracted from manufactured blades. A final design of 36 blades per stage was based on rule-of-mixture material properties. In Task 2, the selected preliminary blade design was refined via more sophisticated analytical tools. Detailed finite element stress analysis and aero performance analysis were carried out to determine blade material frequencies and directional stresses
Impact absorbing blade mounts for variable pitch blades
A variable pitch blade and blade mount are reported that are suitable for propellers, fans and the like and which have improved impact resistance. Composite fan blades and blade mounting arrangements permit the blades to pivot relative to a turbine hub about an axis generally parallel to the centerline of the engine upon impact of a large foreign object, such as a bird. Centrifugal force recovery becomes the principal energy absorbing mechanism and a blade having improved impact strength is obtained
Impact resistance of current design composite fan blades tested under short-haul operating conditions
Boron/epoxy and graphite/epoxy composite blades were impacted in a rotating whirligig facility with conditions closely simulating those which might be experienced by a STOL engine impacted with various foreign objects. The tip speed of the rotating blades was 800 feet per second. The blades were impacted with simulated birds, real birds, ice balls, and gravel. The results of composite blade impact tests were compared with a titanium blade tested under similar conditions. Neither composite material indicated a clear superiority over the other. Blades made from both composite materials showed more damage than the titanium blades
Photochemistry and Pinhole Photography: An Interdisciplinary Experiment
This interdisciplinary activity combines chemistry and art through the construction and use of a pinhole camera. We focused on the chemistry of the black and white photographic process as the science component of this activity. The reactions involved are good examples of photochemistry and multiphase chemical reactions, since the light sensitive materials (silver halides) are in the form of a gelatin emulsion of microscopic crystals
- …