63 research outputs found

    A low-cost biological agglutination assay for medical diagnostic applications

    Get PDF
    Affordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing are key in addressing challenges in the diagnosis of medical conditions and for improving global health in general. Ideally, POC diagnostic tests should be highly selective for the biomarker, user-friendly, have a flexible design architecture and a low cost of production. Here we developed a novel agglutination assay based on whole E. coli cells surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design as a new diagnostic platform by the detection of a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations supported using straight-forward design rules and a mathematical model. Finally, we re-engineer E. coli cells for the detection of a medically relevant biomarker by the display of two different antibodies against the human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for both field-testing in the developing world, emergency or disaster relief sites as well as routine medical testing and personalized medicine

    ‘New Medicine Service’: supporting adherence in people starting a new medication for a long-term condition: 26-week follow-up of a pragmatic randomised controlled trial

    Get PDF
    OBJECTIVE: To examine the effectiveness and cost-effectiveness of the community pharmacy New Medicine Service (NMS) at 26 weeks. METHODS: Pragmatic patient-level parallel randomised controlled trial in 46 English community pharmacies. 504 participants aged ≥14, identified in the pharmacy when presenting a prescription for a new medicine for predefined long-term conditions, randomised to receive NMS (n=251) or normal practice (n=253) (NMS intervention: 2 consultations 1 and 2 weeks after prescription presentation). Adherence assessed through patient self-report at 26-week follow-up. Intention-to-treat analysis employed. National Health Service (NHS) costs calculated. Disease-specific Markov models estimating impact of non-adherence combined with clinical trial data to calculate costs per extra quality-adjusted life-year (QALY; NHS England perspective). RESULTS: Unadjusted analysis: of 327 patients still taking the initial medicine, 97/170 (57.1%) and 103/157 (65.6%) (p=0.113) patients were adherent in normal practice and NMS arms, respectively. Adjusted intention-to-treat analysis: adherence OR 1.50 (95% CI 0.93 to 2.44, p=0.095), in favour of NMS. There was a non-significant reduction in 26-week NHS costs for NMS: -£104 (95% CI -£37 to £257, p=0.168) per patient. NMS generated a mean of 0.04 (95% CI -0.01 to 0.13) more QALYs per patient, with mean reduction in lifetime cost of -£113.9 (-1159.4, 683.7). The incremental cost-effectiveness ratio was -£2758/QALY (2.5% and 97.5%: -38 739.5, 34 024.2. NMS has an 89% probability of cost-effectiveness at a willingness to pay of £20 000 per QALY. CONCLUSIONS: At 26-week follow-up, NMS was unable to demonstrate a statistically significant increase in adherence or reduction in NHS costs, which may be attributable to patient attrition from the study. Long-term economic evaluation suggested NMS may deliver better patient outcomes and reduced overall healthcare costs than normal practice, but uncertainty around this finding is high. TRIAL REGISTRATION NUMBER: NCT01635361, ISRCTN23560818, ISRCTN23560818, UKCRN12494

    Engineering the Controlled Assembly of Filamentous Injectisomes in E. coli K-12 for Protein Translocation into Mammalian Cells.

    Get PDF
    Bacterial pathogens containing type III protein secretion systems (T3SS) assemble large needle-like protein complexes in the bacterial envelope, called injectisomes, for translocation of protein effectors into host cells. The application of these molecular syringes for the injection of proteins into mammalian cells is hindered by their structural and genomic complexity, requiring multiple polypeptides encoded along with effectors in various transcriptional units (TUs) with intricate regulation. In this work, we have rationally designed the controlled expression of the filamentous injectisomes found in enteropathogenic Escherichia coli (EPEC) in the nonpathogenic strain E. coli K-12. All structural components of EPEC injectisomes, encoded in a genomic island called the locus of enterocyte effacement (LEE), were engineered in five TUs (eLEEs) excluding effectors, promoters and transcriptional regulators. These eLEEs were placed under the control of the IPTG-inducible promoter Ptac and integrated into specific chromosomal sites of E. coli K-12 using a marker-less strategy. The resulting strain, named synthetic injector E. coli (SIEC), assembles filamentous injectisomes similar to those in EPEC. SIEC injectisomes form pores in the host plasma membrane and are able to translocate T3-substrate proteins (e.g., translocated intimin receptor, Tir) into the cytoplasm of HeLa cells reproducing the phenotypes of intimate attachment and polymerization of actin-pedestals elicited by EPEC bacteria. Hence, SIEC strain allows the controlled expression of functional filamentous injectisomes for efficient translocation of proteins with T3S-signals into mammalian cells

    Impact of today's media on university student's body image in Pakistan: a conservative, developing country's perspective

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Living in a world greatly controlled by mass media makes it impossible to escape its pervading influence. As media in Pakistan has been free in the true sense of the word for only a few years, its impact on individuals is yet to be assessed. Our study aims to be the first to look at the effect media has on the body image of university students in a conservative, developing country like Pakistan. Also, we introduced the novel concept of body image dissatisfaction as being both negative and positive.</p> <p>Methods</p> <p>A cross-sectional study was conducted among 7 private universities over a period of two weeks in the city of Karachi, Pakistan's largest and most populous city. Convenience sampling was used to select both male and female undergraduate students aged between 18 and 25 and a sample size of 783 was calculated.</p> <p>Results</p> <p>Of the 784 final respondents, 376 (48%) were males and 408 (52%) females. The mean age of males was 20.77 (+/- 1.85) years and females was 20.38 (+/- 1.63) years. Out of these, 358 (45.6%) respondents had a positive BID (body image dissatisfaction) score while 426 (54.4%) had a negative BID score. Of the respondents who had positive BID scores, 93 (24.7%) were male and 265 (65.0%) were female. Of the respondents with a negative BID score, 283 (75.3%) were male and 143 (35.0%) were female. The results for BID vs. media exposure were similar in both high and low peer pressure groups. Low media exposure meant positive BID scores and vice versa in both groups (p < 0.0001) showing a statistically significant association between high media exposure and negative body image dissatisfaction. Finally, we looked at the association between gender and image dissatisfaction. Again a statistically significant association was found between positive body image dissatisfaction and female gender and negative body image dissatisfaction and male gender (p < 0.0001).</p> <p>Conclusions</p> <p>Our study confirmed the tendency of the media to have an overall negative effect on individuals' body image. A striking feature of our study, however, was the finding that negative body image dissatisfaction was found to be more prevalent in males as compared to females. Likewise, positive BID scores were more prevalent amongst females.</p

    A mathematical model of the link between growth and L-malic acid consumption for five strains of Oenococcus oeni

    Get PDF
    In winemaking, after the alcoholic fermentation of red wines and some white wines, L-malic acid must be converted into L-lactic acid to reduce the acidity. This malolactic fermentation (MLF) is usually carried out by the lactic acid bacteria Oenococcus oeni. Depending on the level of process control, selected O. oeni is inoculated or the natural microbiota of the cellar is used. This study considers the link between growth and MLF for five strains of O. oeni species. The kinetics of growth and L-malic acid consumption were followed in modified MRS medium (20 °C, pH 3.5, and 10 % ethanol) in anaerobic conditions. A large variability was found among the strains for both their growth and their consumption of L-malic acid. There was no direct link between biomass productivities and consumption of L-malic acid among strains but there was a link of proportionality between the specific growth of a strain and its specific consumption of L-malic acid. Experiments with and without malic acid clearly demonstrated that malic acid consumption improved the growth of strains. This link was quantified by a mathematical model comparing the intrinsic malic acid consumption capacity of the strains
    corecore