23 research outputs found

    Assessment of genotype by year interaction for yield components and physiological traits in cotton under drought stress using multivariate analysis and genetic parameters

    Get PDF
    The objective of this study was to identify genotype high yielding and drought-tolerant, by understanding the interaction GY pattern for yield, yield components and physiological traits in 24 cotton genotypes over five years under drought stress conditions using AMMI analysis, genetic parameters and multivariate analysis. All assessed traits were significantly impacted by genotypes and GY interaction using the AMMI model, with the exception of chlorophyll b by GY interaction. Meanwhile, seed cotton yield/plant, number of open bolls/plant, lint percentage, lint cotton yield/plant, and number of fruiting branches/plant were significantly affected by the year's factor. High BSH coupled with high GAM% was observed for all studied traits, indicating the heritability due to additive type of gene action and, the importance of these genotypes and the possibility of effective selection for drought-tolerant genotype development. A statistically significant correlation was discovered between cotton yield and most investigated traits under drought stress conditions. Direct selection can be done through these traits based on genetic parameters and Pearson's correlations analyses, which will be effective for drought tolerance and enhancing cotton yield. The results of our study's Pearson's correlation analysis, PCA and cluster analysis could be relevant and appropriate for studying drought tolerance mechanisms and cotton yield improvement. According to PCA and cluster analysis, the genotypes G20 and G19 followed by G5, G4 and G21 genotypes showed the best performance in response to drought stress regarding the yield, yield components and physiological-related traits. The previous genotypes could be used in future cotton breeding efforts in Egypt to promote drought tolerance, improve cotton productivity, and sustainable production during drought stress conditions

    Influence of the Position of Mango Fruit on the Tree (<i>Mangifera indica</i> L. CV. ‘Zibda’) on Chilling Sensitivity and Antioxidant Enzyme Activity

    No full text
    Mango fruits sourced from tropical yields have had a high commercial comeback from being viewed as susceptible to chilling injury under long storage durations. When the fruits are exposed to cold storage, this results in physiological changes due to the side effects of the storage on the fruits, expanding the rates of loss during the period between harvest and marketing. It is difficult to harvest mangoes as the fruits show varying maturities and are located in different positions on the trees. The purpose of this study was to test the idea that fruits’ location on the tree influences how the fruit behaves during cold storage. During two seasons (2019–2020), the impact of on-tree fruit location, i.e., sunny side (SUN; fruit exposed to the sun for most of the day), shade (SHA; fruit grown on the shady side of trees), and inside the canopy (INS; fruit grown inside the tree canopy), on the chilling sensitivity and the activities of antioxidant enzymes of ‘Zibda’ mangos stored at a low temperature (4 ± 1 °C) for 35 days was determined. In contrast to SHA and SUN mangos, INS fruits were shown to be progressively tolerant to low storage temperatures. These fruits also showed the highest activities of ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). In addition, the contents of O2− and H2O2 decreased in INS fruit during storage. Consequently, the cell membrane compartments were maintained, showing low accumulation of both malondialdehyde (MDA) and the protein carbonyl group (PCG) during storage. These results indicate that the fruit positions can also be considered at the time of harvesting for the classification of fruits before cold storage. This classification can also be added to the mango trading protocol to minimize the loss of economic returns by chilling injury

    Influence of the Position of Mango Fruit on the Tree (Mangifera indica L. CV. &lsquo;Zibda&rsquo;) on Chilling Sensitivity and Antioxidant Enzyme Activity

    No full text
    Mango fruits sourced from tropical yields have had a high commercial comeback from being viewed as susceptible to chilling injury under long storage durations. When the fruits are exposed to cold storage, this results in physiological changes due to the side effects of the storage on the fruits, expanding the rates of loss during the period between harvest and marketing. It is difficult to harvest mangoes as the fruits show varying maturities and are located in different positions on the trees. The purpose of this study was to test the idea that fruits&rsquo; location on the tree influences how the fruit behaves during cold storage. During two seasons (2019&ndash;2020), the impact of on-tree fruit location, i.e., sunny side (SUN; fruit exposed to the sun for most of the day), shade (SHA; fruit grown on the shady side of trees), and inside the canopy (INS; fruit grown inside the tree canopy), on the chilling sensitivity and the activities of antioxidant enzymes of &lsquo;Zibda&rsquo; mangos stored at a low temperature (4 &plusmn; 1 &deg;C) for 35 days was determined. In contrast to SHA and SUN mangos, INS fruits were shown to be progressively tolerant to low storage temperatures. These fruits also showed the highest activities of ascorbate peroxidase (APX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD). In addition, the contents of O2&minus; and H2O2 decreased in INS fruit during storage. Consequently, the cell membrane compartments were maintained, showing low accumulation of both malondialdehyde (MDA) and the protein carbonyl group (PCG) during storage. These results indicate that the fruit positions can also be considered at the time of harvesting for the classification of fruits before cold storage. This classification can also be added to the mango trading protocol to minimize the loss of economic returns by chilling injury

    Growth, Yield, and Bunch Quality of “Superior Seedless” Vines Grown on Different Rootstocks Change in Response to Salt Stress

    No full text
    The growth and quality of vines are negatively affected by soil salinity if enough salts accumulate in the root zone. As part of the current study, we estimated the remediating effects of rootstocks under salinity. For this reason, “superior seedless” vines were grafted onto three different rootstocks, such as SO4, 1103 Paulson, and own-root (“superior seedless” with their own-root). The experiment was conducted in the 2019 and 2020 seasons. This study examines the effects of different rootstocks on vine growth, yield, and quality using “superior seedless” vines grown in sandy soil with salinity. Four stages of berry development were examined (flowering, fruit set, veraison, and harvest time). At harvest, yield characteristics (clusters per vine and cluster weight) were also assessed. Each parameter of the growth season was influenced separately. The K+ and Na+ ratios were also significantly increased, as were the salinity symptoms index and bunch yield per vine and quality. Rootstock 1103 Paulson improved photosynthetic pigments, K+ accumulation, Na+ uptake, and cell membrane damage in “superior seedless” vines compared to other rootstocks, according to the study results. As determined in the arid regions of northwestern Egypt, the 1103 Paulson can mitigate salinity issues when planting “superior seedless” vines on sandy soil

    Influence of Non-Thermal Plasma on the Quality and Nutritional Content of Palm Dates

    No full text
    In this work, the surface dielectric barrier discharge (SDBD) plasma treatment was used to sterilize the palm date fruits. N2SPS, N2FNS, and hydroxyl radical have emerged in the emission spectrum of the plasma from SDBD. The effects of SDBD plasma on A. niger that was extracted from palm date varieties were investigated. After 15 days of incubation, the reduction of A. niger at a 3 min exposure time was 4 log. The total phenolic content of the Ajwa variety after SDBD plasma treatment has been documented as the highest value among the other varieties; it was 1.65-fold of the untreated one. The treated Ajwa variety using SDBD plasma has recorded the highest increase in antioxidant activity; it was increased to 67.69% compared to the control one. After SDBD plasma treatment, the HMF was not detected in the Maghol variety. According to the PCA model, the first two PCs demonstrated strong positive correlations with most of the examined variables and demonstrated a strong positive correlation between these variables when assessed in both untreated and treated with SDBD plasma of palm date types in this stud

    Influence of Non-Thermal Plasma on the Quality and Nutritional Content of Palm Dates

    No full text
    In this work, the surface dielectric barrier discharge (SDBD) plasma treatment was used to sterilize the palm date fruits. N2SPS, N2FNS, and hydroxyl radical have emerged in the emission spectrum of the plasma from SDBD. The effects of SDBD plasma on A. niger that was extracted from palm date varieties were investigated. After 15 days of incubation, the reduction of A. niger at a 3 min exposure time was 4 log. The total phenolic content of the Ajwa variety after SDBD plasma treatment has been documented as the highest value among the other varieties; it was 1.65-fold of the untreated one. The treated Ajwa variety using SDBD plasma has recorded the highest increase in antioxidant activity; it was increased to 67.69% compared to the control one. After SDBD plasma treatment, the HMF was not detected in the Maghol variety. According to the PCA model, the first two PCs demonstrated strong positive correlations with most of the examined variables and demonstrated a strong positive correlation between these variables when assessed in both untreated and treated with SDBD plasma of palm date types in this stud

    Effect of Elevated CO<sub>2</sub> on Biomolecules’ Accumulation in Caraway (<i>Carum carvi</i> L.) Plants at Different Developmental Stages

    No full text
    Caraway plants have been known as a rich source of phytochemicals, such as flavonoids, monoterpenoid glucosides and alkaloids. In this regard, the application of elevated CO2 (eCO2) as a bio-enhancer for increasing plant growth and phytochemical content has been the focus of many studies; however, the interaction between eCO2 and plants at different developmental stages has not been extensively explored. Thus, the present study aimed at investigating the changes in growth, photosynthesis and phytochemicals of caraway plants at two developmental stages (sprouts and mature tissues) under control and increased CO2 conditions (ambient CO2 (a CO2, 400 ± 27 ÎŒmol CO2 mol−1 air) and eCO2, 620 ± 42 ÎŒmol CO2 mol−1 air ppm). Moreover, we evaluated the impact of eCO2-induced changes in plant metabolites on the antioxidant and antibacterial activities of caraway sprouts and mature plants. CO2 enrichment increased photosynthesis and biomass accumulation of both caraway stages. Regarding their phytochemical contents, caraway plants interacted differently with eCO2, depending on their developmental stages. High levels of CO2 enhanced the production of total nutrients, i.e., carbohydrates, proteins, fats and crude fibers, as well as organic and amino acids, in an equal pattern in both caraway sprouts and mature plants. Interestingly, the eCO2-induced effect on minerals, vitamins and phenolics was more pronounced in caraway sprouts than the mature tissues. Furthermore, the antioxidant and antibacterial activities of caraway plants were enhanced under eCO2 treatment, particularly at the mature stage. Overall, eCO2 provoked changes in the phytochemical contents of caraway plants, particularly at the sprouting stage and, hence, improved their nutritive and health-promoting properties

    Developmental stages-specific response of anise plants to laser-induced growth, nutrients accumulation, and essential oil metabolism

    No full text
    Compared to seeds and mature tissues, sprouts are well known for their higher nutritive and biological values. Fruits of Pimpinella anisum (anise) are extensively consumed as food additives; however, the sprouting-induced changes in their nutritious metabolites are hardly studied. Herein, we investigated the bioactive metabolites, phytochemicals, and antioxidant properties of fruits, sprouts (9-day-old), and mature tissue (5-week-old) of anise under laser irradiation treatment (He-Ne laser, 632 nm). Laser treatment increased biomass accumulation of both anise sprouts and mature plants. Bioactive primary (e.g., proteins and sugars) and secondary metabolites (e.g., phenolic compounds), as well as mineral levels, were significantly enhanced by sprouting and/or laser light treatment. Meanwhile, laser light has improved the levels of essential oils and their related precursors (e.g., phenylalanine), as well as enzyme activities [e.g., O–methyltransferase and 3-Deoxy-D-arabino-heptulosonate-7-phosphate synthase (DAHPS)] in mature tissues. Moreover, laser light induced higher levels of antioxidant and anti-lipidemic activities in sprouts as compared to fruits and mature tissues. Particularly at the sprouting stage, anise was more responsive to laser light treatment than mature plants

    Modulation of Antioxidant Defense Mechanisms and Morpho-Physiological Attributes of Wheat through Exogenous Application of Silicon and Melatonin under Water Deficit Conditions

    No full text
    Although the individual influences of silicon (Si) and melatonin (MT) have been widely studied under various abiotic stresses, little is known about their interaction under drought stress. In this study, an experiment in pots was carried out to investigate the potential of an individual or combined foliar application of silicon (Si) and melatonin (ML) (control (ck), water spray, 4.0 mM Si, 200 ”M ML, and 4.0 mM Si + 200 ”M ML) on wheat grown at two different water-holding capacity levels (80% well-water condition and 40% drought stress) in order to check of grain yield and some important physiological characteristics. Under drought stress conditions, grain yield and yield attributes, water content and photosynthetic efficiency of wheat crops were significantly decreased. Application of Si+ ML significantly improved leaf pigments (Chl a, Chl b and Chll a + b), leaf relative water content (RWC), proline, total soluble sugars, and total soluble protein. As well as, the activities of important antioxidant enzymes, including catalase (CAT), superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) were effectively boosted through the combined application of Si + ML. This improvement was correlated with an obvious decrease in the levels of MDA, H2O2, and electrolyte leakage and increased water use efficiency. Conclusively, the combination of Si + ML significantly enhanced the 20.21% yield and various morpho-physiological attributes of drought-stressed wheat plants and can be recommended as a promising treatment to enhance wheat productivity in drought-affected regions. Additionally, the results of this study may open up a whole new area of research opportunities at the transcriptional level to further understand the mechanisms underlying how Si + ML integrates and interacts with plants under drought stress
    corecore