68 research outputs found

    High frequency of the D allele of the angiotensin-converting enzyme gene in Arabic populations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The angiotensin-converting enzyme (ACE) gene in humans has an insertion-deletion (I/D) polymorphic state in intron 16 on chromosome 17q23. This polymorphism has been widely investigated in different populations due to its association with the renin-angiotensin system. However, similar studies for Arab populations are limited. This study addresses the distribution of the ACE gene polymorphism in three Arab populations (Egyptians, Jordanians and Syrians).</p> <p>Findings</p> <p>The polymorphisms of ACE gene were investigated using polymerase chain reaction for detection of an I/D mutation. The results showed a high frequency of the ACE <it>D </it>allele among the three Arab populations, Egyptians (0.67), Jordanians (0.66) and Syrians (0.60), which is similar to those obtained from previous studies for Arab populations.</p> <p>Conclusion</p> <p>The relationship between ACE alleles and disease in these three Arab populations is still not known, but the present results clearly suggest that geographic origin should be carefully considered in the increasing number of studies on the association between ACE alleles and disease etiology. This study adds to the data showing the wide variation in the distribution of the ACE alleles in different populations and highlights that great care needs to be taken when interpreting clinical data on the association of the ACE alleles with different diseases.</p

    Distribution of the HIV resistance CCR5-Δ32 allele among Egyptians and Syrians

    Get PDF
    A mutant allele of the ÎČ-chemokine receptor gene CCR5 bearing a 32-basepair (bp) deletion that prevents cell invasion by the primary transmitting strain of HIV-1 has recently been characterized. Individuals homozygous for the mutation are resistant to infection, even after repeated high-risk exposure, but this resistance appears not absolute, as isolated cases of HIV-positive deletion homozygotes are emerging. The consequence of the heterozygous state is not clear, but it may delay the progression to AIDS in infected individuals. In order to evaluate the frequency distribution of CCR5-Δ32 polymorphism among Egyptians, a total of 200 individuals (154 from Ismailia and 46 from Sinai) were tested. Only two heterozygous individuals from Ismailia carried the CCR5-Δ32 allele (0.6%), and no homozygous (Δ32/Δ32) individuals were detected among the tested samples. The presence of the CCR5-Δ32 allele among Egyptians may be attributed to the admixture with people of European descent. Thus we conclude that the protective deletion CCR5-Δ32 is largely absent in the Egyptian population. © 2006 Elsevier B.V. All rights reserved

    Allele frequencies of the human platelet antigen-1 in the Egyptian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The human platelet alloantigen system HPA-1 in the Egyptian population was examined by polymerase chain reaction using sequence-specific primers (PCR-SSP). The objectives of this study were to evaluate the allele frequency of HPA-1a and -1b in healthy Egyptian individuals and compare these with the international literature. Human platelet antigen (HPA) systems are associated with alloimmunization and organ transplantation rejection as well as the development of cardiovascular disease. Of the various HPA systems, HPA-1 specifically has been considered to be the most important antigenic system implicated in the Caucasian population. No study has yet examined this system in the Egyptian populations, however. We therefore investigated the allele frequency of the HPA-1 system in the Egyptian population.</p> <p>Findings</p> <p>To determine the allele frequency of the HPA-1a and -1b, we tested genomic DNAs from 206 healthy, unrelated Egyptian individuals using PCR-SSP. Our results showed that the 1a/1a genotype was the most predominant (59.22%) followed by 1a/1b (34.95%) and 1b/1b (5.83%) with allele frequencies for 1a and 1b of 0.77 and 0.23, respectively, in the population.</p> <p>Conclusion</p> <p>As compared with other geographic groups, a relatively high allele frequency of the HPA-1b in the Egyptian population may indicate a higher risk of alloimmunization. This study is the first to investigate the allele frequency of the HPA-1 system in the Egyptian population and serves as an outline for future clinical research associated with platelet disorders in this group.</p

    SINEs of a nearly perfect character

    Get PDF
    Mobile elements have been recognized as powerful tools for phylogenetic and population-level analyses. However, issues regarding potential sources of homoplasy and other misleading events have been raised. We have collected available data for all phylogenetic and population level studies of primates utilizing Alu insertion data and examined them for potentially homoplasious and other misleading events. Very low levels of each potential confounding factor in a phylogenetic or population analysis (i.e., lineage sorting, parallel insertions, and precise excision) were found. Although taxa known to be subject to high levels of these types of events may indeed be subject to problems when using SINE analysis, we propose that most taxa will respond as the order Primates has-by the resolution of several long-standing problems observed using sequence-based methods. © 2006 Society of Systematic Biologists

    Analysis of the human Alu Ye lineage

    Get PDF
    Background: Alu elements are short (∌300 bp) interspersed elements that amplify in primate genomes through a process termed retroposition. The expansion of these elements has had a significant impact on the structure and function of primate genomes. Approximately 10 % of the mass of the human genome is comprised of Alu elements, making them the most abundant short interspersed element (SINE) in our genome. The majority of Alu amplification occurred early in primate evolution, and the current rate of Alu retroposition is at least 100 fold slower than the peak of amplification that occurred 30-50 million years ago. Alu elements are therefore a rich source of inter- and intra-species primate genomic variation. Results: A total of 153 Alu elements from the Ye subfamily were extracted from the draft sequence of the human genome. Analysis of these elements resulted in the discovery of two new Alu subfamilies, Ye4 and Ye6, complementing the previously described Ye5 subfamily. DNA sequence analysis of each of the Alu Ye subfamilies yielded average age estimates of ∌14, ∌13 and ∌9.5 million years old for the Alu Ye4, Ye5 and Ye6 subfamilies, respectively. In addition, 120 Alu Ye4, Ye5 and Ye6 loci were screened using polymerase chain reaction (PCR) assays to determine their phylogenetic origin and levels of human genomic diversity. Conclusion: The Alu Ye lineage appears to have started amplifying relatively early in primate evolution and continued propagating at a low level as many of its members are found in a variety of hominoid (humans, greater and lesser ape) genomes. Detailed sequence analysis of several Alu pre-integration sites indicated that multiple types of events had occurred, including gene conversions, near-parallel independent insertions of different Alu elements and Alu-mediated genomic deletions. A potential hotspot for Alu insertion in the Fer1L3 gene on chromosome 10 was also identified. © 2005 Salem et al; licensee BioMed Central Ltd

    Recently integrated Alu elements and human genomic diversity

    Get PDF
    A comprehensive analysis of two Alu Y lineage subfamilies was undertaken to assess Alu-associated genomic diversity and identify new Alu insertion polymorphisms for the study of human population genetics. Recently integrated Alu elements (283) from the Yg6 and Yi6 subfamilies were analyzed by polymerase chain reaction (PCR), and 25 of the loci analyzed were polymorphic for insertion presence/absence within the genomes of a diverse array of human populations. These newly identified Alu insertion polymorphisms will be useful tools for the study of human genomic diversity. Our screening of the Alu insertion loci also resulted in the recovery of several young Alu elements that resided at orthologous positions in nonhuman primate genomes. Sequence analysis demonstrated these young Alu insertions were the products of gene conversion events of older, preexisting Alu elements or independent parallel forward insertions of older Alu elements in the same short genomic region. The level of gene conversion between Alu elements suggests that it may have an influence on the single nucleotide polymorphism within Alu elements in the genome. We have also identified two genomic deletions associated with the retroposition and insertion of Alu Y lineage elements into the human genome. This type of Alu retroposition-mediated genomic deletion is a novel source of lineage-specific evolution within primate genomes

    Potential gene conversion and source genes for recently integrated Alu elements

    Get PDF
    Alu elements comprise \u3e10% of the human genome. We have used a computational biology approach to analyze the human genomic DNA sequence databases to determine the impact of gene conversion on the sequence diversity of recently integrated Alu elements and to identify Alu elements that were potentially retroposition competent. We analyzed 269 Alu Ya5 elements and identified 23 members of a new Alu subfamily termed Ya5a2 with an estimated copy number of 35 members, including the de novo Alu insertion in the NFI gene. Our analysis of Alu elements containing one to four (Ya1-Ya4) of the Ya5 subfamily-specific mutations suggests that gene conversion contributed as much as 10%-20% of the variation between recently integrated Alu elements. In addition, analysis of the middle A-rich region of the different Alu Ya5 members indicates a tendency toward expansion of this region and subsequent generation of simple sequence repeats. Mining the databases for putative retroposition-competent elements that share 100% nucleotide identity to the previously reported de novo Alu insertions linked to human diseases resulted in the retrieval of 13 exact matches to the NF1 Alu repeat, three to the Alu element in BRCA2, and one to the Alu element in FGFR2 (Apert syndrome). Transient transfections of the potential source gene for the Apert\u27s Alu with its endogenous flanking genomic sequences demonstrated the transcriptional and presumptive transpositional competency of the element

    Genome-wide analysis of the human Alu Yb-lineage.

    Get PDF
    The Alu Yb-lineage is a \u27young\u27 primarily human-specific group of short interspersed element (SINE) subfamilies that have integrated throughout the human genome. In this study, we have computationally screened the draft sequence of the human genome for Alu Yb-lineage subfamily members present on autosomal chromosomes. A total of 1,733 Yb Alu subfamily members have integrated into human autosomes. The average ages of Yb-lineage subfamilies, Yb7, Yb8 and Yb9, are estimated as 4.81, 2.39 and 2.32 million years, respectively. In order to determine the contribution of the Alu Yb-lineage to human genomic diversity, 1,202 loci were analysed using polymerase chain reaction (PCR)-based assays, which amplify the genomic regions containing individual Yb-lineage subfamily members. Approximately 20 percent of the Yb-lineage Alu elements are polymorphic for insertion presence/absence in the human genome. Fewer than 0.5 percent of the Yb loci also demonstrate insertions at orthologous positions in non-human primate genomes. Genomic sequencing of these unusual loci demonstrates that each of the orthologous loci from non-human primate genomes contains older Y, Sg and Sx Alu family members that have been altered, through various mechanisms, into Yb8 sequences. These data suggest that Alu Yb-lineage subfamily members are largely restricted to the human genome. The high copy number, level of insertion polymorphism and estimated age indicate that members of the Alu Yb elements will be useful in a wide range of genetic analyses
    • 

    corecore