78 research outputs found

    Application of compositional models for glycan HILIC data

    Get PDF
    Glycoconjugates constitute a major class of biomolecules which include glycoproteins, glycosphingolipids and proteoglycans. The enzymatic process in which glycans (sugar chains) are linked to proteins or lipids is called glycosylation. Glycosylation is involved in many biological processes, both physiological and pathological, inlcuding host-pathogen interactions, tumour invasion, cell trafficking and signalling. Changes in glycan structure are thought be be at least partly responsible for the development of inflammation, infection, arteriosclerosis, immune defects and autoimmunity. Such changes have been observed in human diseases such as diabetes mellitus, rheumatoid arthritis and Alzheimer’s Disease. Aberrant patterns of glycosylation are also a universal feature of cancer cells. The field of glycobiology thus shows great potential for the discovery of glycan biomarkers for disease diagnosis and prognosis. Here we focus specifically on N-glycans, that is, glycans attached to protein molecules via a nitrogen atom. This class of glycans is the best characterized. High-throughput HILIC analysis is a well-established technique for the separation and quantification of N-linked glycans released from glycoproteins. HILIC analysis quantifies theN-glycan structures in serum via a chromatogram, which is subsequently standardized and integrated. The generated data for each sample is a set of relative HILIC peak areas and as a result, the data is compositional. To-date, most statistical analyses of these glycan data fail to account for their compositional nature. We compare and contrast three compositional data models for the glycan HILIC data: the Dirichlet, Nested Dirichlet and Logistic Normal models, with the intention of providing tools for the statistical analysis of compositional data analysis in the glycobiology field. We use these three models for classification of disease/control cases in ovarian and lung cancer diagnosis applications. We discuss and compare these models in terms of their classification performance and goodness-of-fit

    Automated, high-throughput serum glycoprofiling platform

    Get PDF
    Complex carbohydrates are rapidly becoming excellent biomarker candidates because of their high sensitivity to pathological changes. However, the discovery of clinical glycobiomarkers has been slow, due to the scarcity of high-throughput glycoanalytical workflows that allow rapid glycoprofiling of large clinical sample sets. To generate high-quality quantitative glycomics data in a high-throughput fashion, we have developed a robotized platform for rapid serum-based N-glycan sample preparation. The sample preparation workflow features a fully automated, rapid glycoprotein denaturation followed by sequential enzymatic glycan release, glycan purification on solid-supported hydrazide and fluorescent labelling. This allows accurate glycan quantitation by ultra-high performance liquid chromatography (UPLC). The sample preparation workflow was automated using an eight-channel Hamilton Robotics liquid handling workstation, allowing the preparation of almost 100 samples in 14 hours with excellent reproducibility and thus should greatly facilitate serum-based glyco-biomarker discovery

    Region-Specific Characterization of N-Glycans in the Striatum and Substantia Nigra of an Adult Rodent Brain

    Get PDF
    N-glycan alterations in the nervous system can result in different neuropathological symptoms such as mental retardation, seizures, and epilepsy. Studies have reported the characterization of N-glycans in rodent brains, but there is a lack of spatial resolution as either the tissue samples were homogenized or specific proteins were selected for analysis of glycosylation. We hypothesize that region-specific resolution of N-glycans isolated from the striatum and substantia nigra (SN) can give an insight into the establishment and pathophysiological degeneration of neural circuitry in Parkinson’s disease. Specific objectives of the study include isolation of N-glycans from the rat striatum and SN; reproducibility, resolution, and relative quantitation of N-glycome using ultra-performance liquid chromatography (UPLC), weak anion exchange-UPLC, and lectin histochemistry. The total N-glycomes from the striatum and SN were characterized using database mining (GlycoStore), exoglycosidase digestions, and liquid chromatography-mass spectrometry. It revealed significant differences in complex and oligomannose type N-glycans, sialylation (mono-, di-, and tetra-), fucosylation (tri-, core, and outer arm), and galactosylation (di-, tri-, and tetra-) between striatum and SN N-glycans with the detection of phosphorylated N-glycans in SN which were not detected in the striatum. This study presents the most comprehensive comparative analysis of relative abundances of N-glycans in the striatum and SN of rodent brains, serving as a foundation for identifying “brain-type” glycans as biomarkers or therapeutic targets and their modulation in neurodegenerative disorders

    An insight on the N-glycome of notochordal cell-rich porcine nucleus pulposus during maturation.

    Get PDF
    Degeneration of the intervertebral disc is an age-related condition. It also accompanies the disappearance of the notochordal cells, which are remnants of the developmental stages of the nucleus pulposus (NP). Molecular changes such as extracellular matrix catabolism, cellular phenotype, and glycosaminoglycan loss in the NP have been extensively studied. However, as one of the most significant co- and posttranslational modifications, glycosylation has been overlooked in cells in degeneration. Here, we aim to characterize the N-glycome of young and mature NP and identify patterns related to aging. Accordingly, we isolated N-glycans from notochordal cell-rich NP from porcine discs, characterized them using a combined approach of exoglycosidase digestions and analysis with hydrophilic interaction ultra-performance liquid chromatography and mass spectrometry. We have assigned over 300 individual N-glycans for each age group. Moreover, we observed a notable abundance of antennary structures, galactosylation, fucosylation, and sialylation in both age groups. In addition, as indicated from our results, increasing outer arm fucosylation and decreasing α(2,3)-linked sialylation with aging suggest that these traits are age-dependent. Lastly, we have focused on an extensive characterization of the N-glycome of the notochordal cell-rich NP in aging without inferred degeneration, describing glycosylation changes specific for aging only. Our findings in combination with those of other studies, suggest that the degeneration of the NP does not involve identical processes as aging

    N‑Glycosylation of Serum IgG and Total Glycoproteins in MAN1B1 Deficiency

    Get PDF
    MAN1B1-CDG has recently been characterized as a type II congenital disorder of glycosylation (CDG), disrupting not only protein N-glycosylation but also general Golgi morphology. Using our high-throughput, quantitative ultra-performance liquid chromatography assay, we achieved a detailed characterization of the glycosylation changes in both total serum glycoproteins and isolated serum IgG from ten previously reported MAN1B1-CDG patients. We have identified and quantified novel hybrid high-mannosylated MAN1B1-CDG-specific IgG glycans and found an increase of sialyl Lewis x (sLex) glycans on serum proteins of all patients. This increase in sLex has not been previously reported in any CDG. These findings may provide insight into the pathophysiology of this CDG

    Glycosylation in Indolent, Significant and Aggressive Prostate Cancer by Automated High-Throughput N-Glycan Profiling

    Get PDF
    The diagnosis and treatment of prostate cancer (PCa) is a major health-care concern worldwide. This cancer can manifest itself in many distinct forms and the transition from clinically indolent PCa to the more invasive aggressive form remains poorly understood. It is now universally accepted that glycan expression patterns change with the cellular modifications that accompany the onset of tumorigenesis. The aim of this study was to investigate if differential glycosylation patterns could distinguish between indolent, significant, and aggressive PCa. Whole serum N-glycan profiling was carried out on 117 prostate cancer patients’ serum using our automated, high-throughput analysis platform for glycan-profiling which utilizes ultra-performance liquid chromatography (UPLC) to obtain high resolution separation of N-linked glycans released from the serum glycoproteins. We observed increases in hybrid, oligomannose, and biantennary digalactosylated monosialylated glycans (M5A1G1S1, M8, and A2G2S1), bisecting glycans (A2B, A2(6)BG1) and monoantennary glycans (A1), and decreases in triantennary trigalactosylated trisialylated glycans with and without core fucose (A3G3S3 and FA3G3S3) with PCa progression from indolent through significant and aggressive disease. These changes give us an insight into the disease pathogenesis and identify potential biomarkers for monitoring the PCa progression, however these need further confirmation studies

    Hypoxia Alters Epigenetic and N-Glycosylation Profiles of Ovarian and Breast Cancer Cell Lines in-vitro

    Get PDF
    Background: Glycosylation is one of the most fundamental post-translational modifications. Importantly, glycosylation is altered in many cancers. These alterations have been proven to impact on tumor progression and to promote tumor cell survival. From the literature, it is known that there is a clear link between chemoresistance and hypoxia, hypoxia and epigenetics and more recently glycosylation and epigenetics. Methods and Results: Our objective was to investigate these differential parameters, in an in vitro model of ovarian and breast cancer. Ovarian (A2780, A2780cis, PEO1, PEO4) and triple negative breast cancer (TNBC) (MDA-MB-231 and MDA-MB-436) cells were exposed to differential hypoxic conditions (0.5–2% O2) and compared to normoxia (21% O2). Results demonstrated that in hypoxic conditions some significant changes in glycosylation on the secreted N-glycans from the ovarian and breast cancer cell lines were observed. These included, alterations in oligomannosylated, bisected glycans, glycans with polylactosamine extensions, in branching, galactosylation and sialylation in all cell lines except for PEO1. In general, hypoxia exposed ovarian and TNBC cells also displayed increased epithelial to mesenchymal transition (EMT) and migration, with a greater effect seen in the 0.5% hypoxia exposed samples compared to 1 and 2% hypoxia (p ≤ 0.05). SiRNA transient knock down of GATA2/3 transcription factors resulted in a decrease in the expression of glycosyltransferases ST3GAL4 and MGAT5, which are responsible for sialylation and branching, respectively. Conclusions: These glycan changes are known to be integral to cancer cell survival and metastases, suggesting a possible mechanism of action, linking GATA2 and 3, and invasiveness of both ovarian and TNBC cells in vitro

    The association between the maternal diet and the maternal and infant gut microbiome: A systematic review

    Get PDF
    During pregnancy, changes occur to influence the maternal gut microbiome, and potentially the fetal microbiome. Diet has been shown to impact the gut microbiome. Little research has been conducted examining diet during pregnancy with respect to the gut microbiome. To meet inclusion criteria, dietary analyses must have been conducted as part of the primary aim. The primary outcome was the composition of the gut microbiome (infant or maternal), as assessed using culture-independent sequencing techniques. This review identified seven studies for inclusion, five examining the maternal gut microbiome and two examining the fetal gut microbiome. Microbial data were attained through analysis of stool samples by 16S rRNA gene-based microbiota assessment. Studies found an association between the maternal diet and gut microbiome. High-fat diets (% fat of total energy), fat-soluble vitamins (mg/day) and fibre (g/day) were the most significant nutrients associated with the gut microbiota composition of both neonates and mothers. High-fat diets were significantly associated with a reduction in microbial diversity. High-fat diets may reduce microbial diversity, while fibre intake may be positively associated with microbial diversity. The results of this review must be interpreted with caution. The number of studies was low, and the risk of observational bias and heterogeneity across the studies must be considered. However, these results show promise for dietary intervention and microbial manipulation in order to favour an increase of health-associated taxa in the gut of the mother and her offspring

    Anti-D monoclonal antibodies from 23 human and rodent cell lines display diverse IgG Fc-glycosylation profiles that determine their clinical efficacy.

    Get PDF
    Anti-D immunoglobulin (Anti-D Ig) prophylaxis prevents haemolytic disease of the fetus and newborn. Monoclonal IgG anti-Ds (mAb-Ds) would enable unlimited supplies but have differed in efficacy in FcγRIIIa-mediated ADCC assays and clinical trials. Structural variations of the oligosaccharide chains of mAb-Ds are hypothesised to be responsible. Quantitative data on 12 Fc-glycosylation features of 23 mAb-Ds (12 clones, 5 produced from multiple cell lines) and one blood donor-derived anti-D Ig were obtained by HPLC and mass spectrometry using 3 methods. Glycosylation of mAb-Ds from human B-lymphoblastoid cell lines (B) was similar to anti-D Ig although fucosylation varied, affecting ADCC activity. In vivo, two B mAb-Ds with 77-81% fucosylation cleared red cells and prevented D-immunisation but less effectively than anti-D Ig. High fucosylation (>89%) of mouse-human heterohybridoma (HH) and Chinese hamster ovary (CHO) mAb-Ds blocked ADCC and clearance. Rat YB2/0 mAb-Ds with 60%) together with lower fucosylation (<60%) as safe features of mAb-Ds for mediating rapid red cell clearance at low doses, to enable effective, inexpensive prophylaxis
    corecore