1,628 research outputs found

    Are CP Violating Effects in the Standard Model Really Tiny?

    Full text link
    We derive an effective action of the bosonic sector of the Standard Model by integrating out the fermionic degrees of freedom in the worldline approach. The CP violation due to the complex phase in the CKM matrix gives rise to CP-violating operators in the effective action. We calculate the prefactor of the appropriate next-to-leading order operators and give general estimates of CP violation in the bosonic sector of the Standard Model. In particular, we show that the effective CP violation for weak gauge fields is not suppressed by the Yukawa couplings of the light quarks and is much larger than the bound given by the Jarlskog determinant.Comment: 4 pages. To appear in the proceedings of the 8th Conference on Strong and Electroweak Matter (SEWM08), Amsterdam, the Netherlands, 26-29 August 200

    Chiral Lagrangian at finite temperature from the Polyakov-Chiral Quark Model

    Get PDF
    We analyze the consequences of the inclusion of the gluonic Polyakov loop in chiral quark models at finite temperature. Specifically, the low-energy effective chiral Lagrangian from two such quark models is computed. The tree level vacuum energy density, quark condensate, pion decay constant and Gasser-Leutwyler coefficients are found to acquire a temperature dependence. This dependence is, however, exponentially small for temperatures below the mass gap in the full unquenched calculation. The introduction of the Polyakov loop and its quantum fluctuations is essential to achieve this result and also the correct large NcN_c counting for the thermal corrections. We find that new coefficients are introduced at O(p4){\cal O}(p^4) to account for the Lorentz breaking at finite temperature. As a byproduct, we obtain the effective Lagrangian which describes the coupling of the Polyakov loop to the Goldstone bosons.Comment: 16 pages, no figure

    Electromagnetic structure and weak decay of pseudoscalar mesons in a light-front QCD-inspired model

    Full text link
    We study the scaling of the 3S11S0^3S_1-^1S_0 meson mass splitting and the pseudoscalar weak decay constants with the mass of the meson, as seen in the available experimental data. We use an effective light-front QCD-inspired dynamical model regulated at short-distances to describe the valence component of the pseudoscalar mesons. The experimentally known values of the mass splittings, decay constants (from global lattice-QCD averages) and the pion charge form factor up to 4 [GeV/c]2^2 are reasonably described by the modelComment: 27 Pages, 7 eps figures,use revtex

    Weak decay constant of pseudscalar meson in a QCD-inspired model

    Full text link
    We show that a linear scaling between the weak decay constants of pseudoscalar and the vector mesons masses is supported by the available experimental data. The decay constant scale as fm/fpi=MV/Mρf_m/f_{pi}=M_V/M_{\rho} (f_m is decay constant and M_V vector meson ground state mass). This simple form is justified within a renormalized light-front QCD-inpired model for quark-antiquark bound states.Comment: 4 pages, use revtex style. To appear "Brazilian Journal of Physics (2003)

    Feynman diagrams with the effective action

    Full text link
    A derivation is given of the Feynman rules to be used in the perturbative computation of the Green's functions of a generic quantum many-body theory when the action which is being perturbed is not necessarily quadratic. Some applications are discussed.Comment: Extended revised version. RevTex, 19 pages, 10 figure

    Electromagnetic structure and weak decay of meson K in a light-front QCD-inspired

    Full text link
    The kaon electromagnetic (e.m.) form factor is reviewed considering a light-front constituent quark model. In this approach, it is discussed the relevance of the quark-antiquark pair terms for the full covariance of the e.m. current. It is also verified, by considering a QCD dynamical model, that a good agreement with experimental data can be obtained for the kaon weak decay constant once a probability of about 80% of the valence component is taken into account.Comment: 4 pages and 1 figure eps. To appear Nucl. Phys. A (2007

    Polyakov loop in chiral quark models at finite temperature

    Get PDF
    We describe how the inclusion of the gluonic Polyakov loop incorporates large gauge invariance and drastically modifies finite temperature calculations in chiral quark models after color neutral states are singled out. This generates an effective theory of quarks and Polyakov loops as basic degrees of freedom. We find a strong suppression of finite temperature effects in hadronic observables triggered by approximate triality conservation (Polyakov cooling), so that while the center symmetry breaking is exponentially small with the constituent quark mass, chiral symmetry restoration is exponentially small with the pion mass. To illustrate the point we compute some low energy observables at finite temperature and show that the finite temperature corrections to the low energy coefficients are NcN_c suppressed due to color average of the Polyakov loop. Our analysis also shows how the phenomenology of chiral quark models at finite temperature can be made compatible with the expectations of chiral perturbation theory. The implications for the simultaneous center symmetry breaking-chiral symmetry restoration phase transition are also discussed.Comment: 24 pages, 8 ps figures. Figure and appendix added. To appear in Physical Review
    corecore