30 research outputs found

    Frequent polymorphic changes but not mutations of TRAIL receptors DR4 and DR5 in mantle cell lymphoma and other B-cell lymphoid neoplasms

    Get PDF
    Background and objectives: tumor necrosis factor related apoptosis-inducing ligand (TRAIL) receptors DR4 and DR5 have been mapped to chromosome 8p21-22, a region frequently deleted in different lymphoid neoplasms. Design and methods: to investigate the potential alterations of these genes in lymphoid neoplasms, we examined the presence of gene mutations in exons 3, 4, and 9 in 69 cases with mantle cell lymphoma (MCL), 16 with chronic lymphocytic leukemia (CLL), 12 with follicular lymphomas (FL) and 17 with large B-cell-lymphomas (DLBCL), as well as in 4 lymphoid cell lines carrying the t(11;14) translocation, and 91 healthy blood donors. Results: three CLL and three MCL cases had 8p deletions. Two nucleotide changes in or near the intron 3 splice consensus sequence and a silent change were found. These rare changes were also present in the germ-line of the patients. The DR4 death domain A1322G polymorphism was significantly more frequent in MCL [odds ratio (OR) = 5.9; 95% confidence interval (CI), 1.92-18.1] and CLL (OR = 4.5; CI, 1.18-17) patients than in a sex and age-adjusted healthy population. In contrast, the DR4 exon 4 C626G polymorphism was associated with a significant overall decreased risk for MCL (OR = 0.3; CI, 0.12-0.8). No mutations or cancer-associated polymorphic changes were found in DR5 domains. Interpretation and conclusions: these findings indicate that mutations of DR4 and DR5 are uncommon in lymphoid neoplasms but DR4 polymorphic alleles may contribute to the pathogenesis of these malignancies

    Dual PI3K/mTOR inhibition is required to effectively impair microenvironment survival signals in mantle cell lymphoma

    Get PDF
    Phosphatidylinositol-3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway activation contributes to mantle cell lymphoma (MCL) pathogenesis and drug resistance. Antitumor activity has been observed with mTOR inhibitors. However, they have shown limited clinical efficacy in relation to drug activation of feedback loops. Selective PI3K inhibition or dual PI3K/mTOR catalytic inhibition are different therapeutic approaches developed to achieve effective pathway blockage. Here, we have performed a comparative analysis of the mTOR inhibitor everolimus, the pan-PI3K inhibitor NVP-BKM120 and the dual PI3K/mTOR inhibitor NVP-BEZ235 in primary MCL cells. We found NVP-BEZ235 to be more powerful than everolimus or NVP-BKM120 in PI3K/Akt/mTOR signaling inhibition, indicating that targeting the PI3K/Akt/mTOR pathway at multiple levels is likely to be a more effective strategy for the treatment of MCL than single inhibition of these kinases. Among the three drugs, NVP-BEZ235 induced the highest change in gene expression profile. Functional validation demonstrated that NVP-BEZ235 inhibited angiogenesis, migration and tumor invasiveness in MCL cells. NVP-BEZ235 was the only drug able to block IL4 and IL6/STAT3 signaling which compromise the therapeutic effect of chemotherapy in MCL. Our findings support the use of the dual PI3K/mTOR inhibitor NVP-BEZ235 as a promising approach to interfere with the microenvironment-related processes in MCL

    White blood cell counts as risk markers of developing metabolic syndrome and its components in the Predimed study.

    Get PDF
    Background The Metabolic Syndrome (MetS) is a cluster of metabolic abnormalities that includes hyperglucemia, hypertension, dyslipidemia and central obesity, conferring an increased risk of cardiovascular disease. The white blood cell (WBC) count has been proposed as a marker for predicting cardiovascular risk. However, few prospective studies have evaluated the relationship between WBC subtypes and risk of MetS. Methods Participants were recruited from seven PREDIMED study centers. Both a baseline cross-sectional (n = 4,377) and a prospective assessment (n = 1,637) were performed. Participants with MetS at baseline were excluded from the longitudinal analysis. The median follow-up was 3.9 years. Anthropometric measurements, blood pressure, fasting glucose, lipid profile and WBC counts were assessed at baseline and yearly during the follow-up. Participants were categorized by baseline WBC and its subtype count quartiles. Adjusted logistic regression models were fitted to assess the risk of MetS and its components. Results Of the 4,377 participants, 62.6% had MetS at baseline. Compared to the participants in the lowest baseline sex-adjusted quartile of WBC counts, those in the upper quartile showed an increased risk of having MetS (OR, 2.47; 95%CI, 2.03-2.99; P-trend<0.001). This association was also observed for all WBC subtypes, except for basophils. Compared to participants in the lowest quartile, those in the top quartile of leukocyte, neutrophil and lymphocyte count had an increased risk of MetS incidence. Leukocyte and neutrophil count were found to be strongly associated with the MetS components hypertriglyceridemia and low HDL-cholesterol. Likewise, lymphocyte counts were found to be associated with the incidence of the MetS components low HDL-cholesterol and high fasting glucose. An increase in the total WBC during the follow-up was also associated with an increased risk of MetS. Conclusions Total WBC counts, and some subtypes, were positively associated with MetS as well as hypertriglyceridemia, low HDL-cholesterol and high fasting glucose, all components of MetS

    Burkitt-like lymphoma with 11q aberration: A germinal center derived lymphoma genetically unrelated to Burkitt lymphoma

    Get PDF
    Burkitt-like lymphoma with 11q aberration is characterized by pathological features and gene expression profile resembling Burkitt lymphoma but lack MYC rearrangement and carries an 11q-arm aberration with proximal gains and telomeric losses. Whether these lymphomas are a distinct category or a particular variant of other recognized entities is controversial. To improve the understanding of Burkitt-like lymphoma with 11q aberration we have performed an analysis of copy number alterations and targeted sequencing of a large panel of B-cell lymphoma related genes in 11 cases. Most patients had localized nodal disease and a favourable outcome after therapy. Histologically, they were high grade B-cell lymphoma, not otherwise specified (8 cases), diffuse large B-cell lymphoma (2 cases) and only one was considered as atypical Burkitt lymphoma. All cases had a germinal center B-cell signature and phenotype with frequent LMO2 expression. Burkitt-like lymphoma with 11q aberration had frequent gains of 12q12-q21.1 and losses of 6q12.1-q21, and lacked common Burkitt lymphoma or diffuse large B-cell lymphoma alterations. Potential driver mutations were found in 27 genes, particularly involving BTG2, DDX3X, ETS1, EP300, and GNA13. However, ID3, TCF3, or CCND3 mutations were absent in all cases. These results suggest that Burkitt-like lymphoma with 11q aberration is a germinal center derived lymphoma closer to high grade B-cell lymphoma or diffuse large B-cell lymphoma rather than Burkitt lymphoma.Copyright © 2019, Ferrata Storti Foundation

    Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma

    Get PDF
    Mantle cell lymphoma (MCL) is considered one of the most challenging lymphoma, with limited responses to current therapies. Acadesine, a nucleoside analogue has shown antitumoral effects in different preclinical cancer models as well as in a recent phase I/II clinical trial conducted in patients with chronic lymphocytic leukemia. Here we observed that acadesine exerted a selective antitumoral activity in the majority of MCL cell lines and primary MCL samples, independently of adverse cytogenetic factors. Moreover, acadesine was highly synergistic, both in vitro and in vivo, with the anti-CD20 monoclonal antibody rituximab, commonly used in combination therapy for MCL. Gene expression profiling analysis in harvested tumors suggested that acadesine modulates immune response, actin cytoskeleton organization and metal binding, pointing out a substantial impact on metabolic processes by the nucleoside analog. Rituximab also induced changes on metal binding and immune responses.The combination of both drugs enhanced the gene signature corresponding to each single agent, showing an enrichment of genes involved in inflammation, metabolic stress, apoptosis and proliferation. These effects could be important as aberrant apoptotic and proinflammatory pathways play a significant role in the pathogenesis of MCL. In summary, our results suggest that acadesine exerts a cytotoxic effect in MCL in combination with rituximab, by decreasing the proliferative and survival signatures of the disease, thus supporting the clinical examination of this strategy in MCL patients

    A short screener is valid for assessing mediterranean diet adherence among older spanish men and women

    Get PDF
    Ensuring the accuracy of dietary assessment instruments is paramount for interpreting diet-disease relationships. The present study assessed the relative and construct validity of the 14-point Mediterranean Diet Adherence Screener (MEDAS) used in the Prevencio´n con Dieta Mediterra´nea (PREDIMED) study, a primary prevention nutrition-intervention trial. A validated FFQ and the MEDAS were administered to 7146 participants of the PREDIMED study. The MEDASderived PREDIMED score correlated significantly with the corresponding FFQ PREDIMED score (r = 0.52; intraclass correlation coefficient = 0.51) and in the anticipated directions with the dietary intakes reported on the FFQ. Using Bland Altman"s analysis, the average MEDAS Mediterranean diet score estimate was 105% of the FFQ PREDIMED score estimate. Limits of agreement ranged between 57 and 153%. Multiple linear regression analyses revealed that a higher PREDIMED score related directly (P , 0.001) to HDL-cholesterol (HDL-C) and inversely (P , 0.038) to BMI, waist circumference, TG, the TG:HDL-C ratio, fasting glucose, and the cholesterol:HDL-C ratio. The 10-y estimated coronary artery disease risk decreased as the PREDIMED score increased (P , 0.001). The MEDAS is a valid instrument for rapid estimation of adherence to the Mediterranean diet and may be useful in clinical practice

    A unifying hypothesis for PNMZL and PTFL: morphological variants with a common molecular profile

    Full text link
    Pediatric nodal marginal zone lymphoma (PNMZL) is an uncommon B-cell neoplasm affecting mainly male children and young adults. This indolent lymphoma has distinct characteristics that differ from those of conventional nodal marginal zone lymphoma (NMZL). Clinically, it exhibits overlapping features with pediatric-type follicular lymphoma (PTFL). To explore the differences between PNMZL and adult NMZL and its relationship to PTFL, a series of 45 PNMZL cases were characterized morphologically and genetically by using an integrated approach; this approach included whole-exome sequencing in a subset of cases, targeted next-generation sequencing, and copy number and DNA methylation arrays. Fourteen cases (31%) were diagnosed as PNMZL, and 31 cases (69%) showed overlapping histologic features between PNMZL and PTFL, including a minor component of residual serpiginous germinal centers reminiscent of PTFL and a dominant interfollicular B-cell component characteristic of PNMZL. All cases displayed low genomic complexity (1.2 alterations per case) with recurrent 1p36/TNFRSF14 copy number-neutral loss of heterozygosity alterations and copy number loss (11%). Similar to PTFL, the most frequently mutated genes in PNMZL were MAP2K1 (42%), TNFRSF14 (36%), and IRF8 (34%). DNA methylation analysis revealed no major differences between PTFL and PNMZL. Genetic alterations typically seen in conventional NMZL were absent in PNMZL. In summary, overlapping clinical, morphologic, and molecular findings (including low genetic complexity; recurrent alterations in MAP2K1, TNFRSF14, and IRF8; and similar methylation profiles) indicate that PNMZL and PTFL are likely part of a single disease with variation in the histologic spectrum. The term "pediatric-type follicular lymphoma with and without marginal zone differentiation" is suggested.Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved

    Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature.

    Get PDF
    Purpose To compare the genetic relationship between cyclin D1 - positive and cyclin D1 - negative mantle cell lymphomas (MCLs) and to determine whether specific genetic alterations may add prognostic information to survival prediction based on the proliferation signature of MCLs. Patients and Methods Seventy-one cyclin D1 - positive and six cyclin D1 - negative MCLs previously characterized by gene expression profiling were examined by comparative genomic hybridization (CGH). Results Cyclin D1 - negative MCLs were genetically characterized by gains of 3q, 8q, and 15q, and losses of 1p, 8p23- pter, 9p21- pter, 11q21- q23, and 13q that were also the most common alterations in conventional MCLs. Parallel analysis of CGH aberrations and locus-specific gene expression profiles in cyclin D1 - positive patients showed that chromosomal imbalances had a substantial impact on the expression levels of the genes located in the altered regions. The analysis of prognostic factors revealed that the proliferation signature, the number of chromosomal aberrations, gains of 3q, and losses of 8p, 9p, and 9q predicted survival of MCL patients. A multivariate analysis showed that the gene expression-based proliferation signature was the strongest predictor for shorter survival. However, 3q gains and 9q losses provided prognostic information that was independent of the proliferative activity. Conclusion Cyclin D1 - positive and - negative MCLs share the same secondary genetic aberrations, supporting the concept that they correspond to the same genetic entity. The integration of genetic information on chromosome 3q and 9q alterations into a proliferation signature-based model may improve the ability to predict survival in patients with MCL

    Genomic complexity and IGHV mutational status are key predictors of outcome of chronic lymphocytic leukemia patients with TP53 disruption.

    Get PDF
    The clinical course of chronic lymphocytic leukemia (CLL) is extremely heterogeneous and while some patients achieve a normal lifespan, others succumb to the disease shortly after diagnosis. Recurrent chromosomal aberrations as detected by chromosome banding analysis (CBA) or fluorescent in situ hybridization (FISH) have a reproducible prognostic power in terms of response to therapy and survival.1–3 In particular, patients whose tumor cells harbor 17p deletions (17p-) are considered to have a shorter survival and, hence, high-risk CLL. This poor prognosis is, however, not universally true for all patients with 17p- CLL. Indeed, we and others have observed that some clinical-biological features, such as presence of B symptoms, advanced clinical stage, size of the 17p- clone, β2-microglobulin (β2M) concentration and IGH mutational status have a significant impact on the outcome of this subgroup of patients.4,5 Novel molecular studies have helped in the understanding of 17p- CLL. On one hand, TP53 mutations are present in more than 80% of cases with 17p deletion and in around 5% of patients without 17p deletion.6,7 On the other hand, next generation sequencing studies have revealed novel genetic aberrations such as NOTCH1 and SF3B1 mutations that have a negative impact on survival.8–10 Finally, genomic complexity, as defined by karyotyping1 or copy number (CN) arrays, has also been independently associated with disease transformation and poor outcome in patients with CLL.11,12 The aim of this study was to evaluate the prognostic value of concomitant molecular abnormalities in patients with CLL and TP53 aberrations as diagnosed by FISH, CBA or DNA sequencing

    Genetic predisposition to chronic lymphocytic leukemia is mediated by a BMF super-enhancer polymorphism

    Get PDF
    Chronic lymphocytic leukemia (CLL) is an adult B cell malignancy. Genome-wide association studies show that variation at 15q15.1 influences CLL risk. We deciphered the causal variant at 15q15.1 and the mechanism by which it influences tumorigenesis. We imputed all possible genotypes across the locus and then mapped highly associated SNPs to areas of chromatin accessibility, evolutionary conservation, and transcription factor binding. SNP rs539846 C>A, the most highly associated variant (p = 1.42 × 10(-13), odds ratio = 1.35), localizes to a super-enhancer defined by extensive histone H3 lysine 27 acetylation in intron 3 of B cell lymphoma 2 (BCL2)-modifying factor (BMF). The rs539846-A risk allele alters a conserved RELA-binding motif, disrupts RELA binding, and is associated with decreased BMF expression in CLL. These findings are consistent with rs539846 influencing CLL susceptibility through differential RELA binding, with direct modulation of BMF expression impacting on anti-apoptotic BCL2, a hallmark of oncogenic dependency in CLL
    corecore