85 research outputs found

    Analysing the impact of learning inputs - Application to terrain traversability estimation

    Get PDF
    Data-driven approaches such as Gaussian Process (GP) regression have been used extensively in recent robotics literature to achieve estimation by learning from experience. To ensure satisfactory performance, in most cases, multiple learning inputs are required. Intuitively, adding new inputs can often contribute to better estimation accuracy, however, it may come at the cost of a new sensor, larger training dataset and/or more complex learning, some- times for limited benefits. Therefore, it is crucial to have a systematic procedure to determine the actual impact each input has on the estimation performance. To address this issue, in this paper we propose to analyse the impact of each input on the estimate using a variance-based sensitivity analysis method. We propose an approach built on Analysis of Variance (ANOVA) decomposition, which can characterise how the prediction changes as one or more of the input changes, and also quantify the prediction uncertainty as attributed from each of the inputs in the framework of dependent inputs. We apply the proposed approach to a terrain-traversability estimation method we proposed in prior work, which is based on multi-task GP regression, and we validate this implementation experimentally using a rover on a Mars-analogue terrain

    Automated Testing of Spatially-Dependent Environmental Hypotheses through Active Transfer Learning

    Full text link
    The efficient collection of samples is an important factor in outdoor information gathering applications on account of high sampling costs such as time, energy, and potential destruction to the environment. Utilization of available a-priori data can be a powerful tool for increasing efficiency. However, the relationships of this data with the quantity of interest are often not known ahead of time, limiting the ability to leverage this knowledge for improved planning efficiency. To this end, this work combines transfer learning and active learning through a Multi-Task Gaussian Process and an information-based objective function. Through this combination it can explore the space of hypothetical inter-quantity relationships and evaluate these hypotheses in real-time, allowing this new knowledge to be immediately exploited for future plans. The performance of the proposed method is evaluated against synthetic data and is shown to evaluate multiple hypotheses correctly. Its effectiveness is also demonstrated on real datasets. The technique is able to identify and leverage hypotheses which show a medium or strong correlation to reduce prediction error by a factor of 1.4--3.4 within the first 7 samples, and poor hypotheses are quickly identified and rejected eventually having no adverse effect.Comment: Accepted for publication and presentation at ICRA 202
    • …
    corecore