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Abstract

Data-driven approaches such as Gaussian Pro-
cess (GP) regression have been used extensively
in recent robotics literature to achieve estima-
tion by learning from experience. To ensure
satisfactory performance, in most cases, mul-
tiple learning inputs are required. Intuitively,
adding new inputs can often contribute to bet-
ter estimation accuracy, however, it may come
at the cost of a new sensor, larger training
dataset and/or more complex learning, some-
times for limited benefits. Therefore, it is cru-
cial to have a systematic procedure to deter-
mine the actual impact each input has on the
estimation performance. To address this is-
sue, in this paper we propose to analyse the
impact of each input on the estimate using a
variance-based sensitivity analysis method. We
propose an approach built on Analysis of Vari-
ance (ANOVA) decomposition, which can char-
acterise how the prediction changes as one or
more of the input changes, and also quantify
the prediction uncertainty as attributed from
each of the inputs in the framework of depen-
dent inputs. We apply the proposed approach
to a terrain-traversability estimation method
we proposed in prior work, which is based on
multi-task GP regression, and we validate this
implementation experimentally using a rover
on a Mars-analogue terrain.

1 Introduction

With the increasing need to adapt to new environments,
data-driven approaches such as Gaussian Process (GP)
regression [Rasmussen and Williams, 2006] have been
used extensively in recent robotics literature to achieve
estimation and classification by learning from experi-
ence. In field robotics alone, examples of application
include terrain modelling [Vasudevan et al., 2009], oc-
cupancy mapping [O’Callaghan and Ramos, 2011] or

terrain traversability estimation [Brooks and Iagnemma,
2012]. Multiple learning inputs are usually needed to ad-
equately describe the various aspects that are correlated
with the states that need to be estimated. These correla-
tions are learnt using complex learning algorithms often
considered as “black box” functions that provide little or
no information about the actual impact of each input on
the resulting estimate. Adding new inputs may be im-
pactful but may come at a cost; for example, the robot
may need to be fitted with additional sensors, learning
is likely to be longer and more complex. Therefore, hav-
ing a systematic procedure to determine the relevance of
each learning input that is considered, by analysing the
actual impact on the quality of the estimation, is essen-
tial. Without such procedure, it is difficult to understand
the shortcomings of the system, or to evaluate the suit-
ability of new inputs. Another benefit of such analysis
would arise in case of the complete failure of a sensor
on a robot, as we may be able to determine how much
this may impact the quality of future estimates with-
out having to train the system again with the new input
configuration. This paper addresses this issue for regres-
sion techniques, in particular using GPs, by proposing
to systematically analysing the impact of each input on
the estimate using a variance-based sensitivity analysis
method.

The overall accuracy of an estimator and the validity
of the error can be checked using cross validation [Jones
et al., 1998]. However, this does not provide insight on
the contribution or the impact of the learning inputs on
the estimation. Sensitivity analysis methods can be used
to better understand the responses of estimation sys-
tems [Saltelli et al., 2000]. The Sobol index [Sobol, 1990],
based on variance decomposition, measures sensitivity
by expanding the global variance into partial variances.
To validate the response of Gaussian Process (GP) re-
gression, frameworks based on sensitivity analysis meth-
ods were proposed in [Schonlau and Welch, 2006]. These
frameworks analysed the effects of input variables on the
estimate. However, both of the above methods rely on



the assumption that the input variables are independent.
If the input variables are dependent, the amount of re-
sponse variance may be influenced by its dependence on
other inputs, and thus can lead to incorrect interpreta-
tions [Mara and Tarantola, 2012].

To account for the contribution from dependent in-
puts, [Xu and Gertner, 2008] proposed to decompose the
partial variance of an input into correlated and uncorre-
lated contribution components, assuming a linear effect
from each component on the response. This approach
was later extended by approximating the effect using a
sum of functional components of low dimensions, and
then computing the decomposition of response variance
as a sum of partial variances [G. Li et al., 2010]. Sensi-
tivity analysis methods to account for non-constant (het-
eroscedastic) variances in the estimate were proposed
in [Dancik and Dorman, 2008].

In this paper we propose to analyse the impact of
learning inputs using a sensitivity analysis method built
on Analysis of Variance (ANOVA) decomposition in a
framework of dependent inputs. This quantifies the con-
tributions from each input to the variability of the result-
ing estimate, including the extent at which the estimate
uncertainty can be attributed to the inputs. The method
first decomposes the estimate into a multi-dimensional
representation of primary and interaction effects between
the inputs. The analytical sensitivity measure is then
calculated for combinations of inputs, and indicates the
significance of each input. This method has the potential
to be used for any multi-input regression method where
there is an uncertainty associated to the output. In this
paper, we focus on GP-based regression.

We implement the proposed approach to analyse the
impact of the learning inputs of a terrain traversability
estimation method based on GPs, which was proposed
in prior work. Terrain traversability estimation is criti-
cal for autonomous planetary rovers travelling on rough
unstructured terrain, to provide them with the abil-
ity to anticipate situations that may compromise their
safety and ability to conduct exploration missions. As
the rover-terrain interaction in such terrain can be very
difficult to model accurately, data-driven approaches
have been developed to estimate terrain traversability
by learning the rover’s response on the terrain based on
experience (e.g. [Brooks and Iagnemma, 2012]). Most
recently, in [Ho et al., 2013a] the authors proposed a
new approach to predict the angles of attitude and chas-
sis configuration (i.e. the joint angles) of a rover on
any location of deformable terrain, given incomplete ter-
rain elevation data. Predicting these angles is essential
to traversability estimation, as they reflect the difficulty
that the rover may have to traverse the terrain. On very
rough terrain, this prediction can even allow us to antic-
ipate risks for the stability of the platform.

To achieve this prediction on specific locations of the
terrain, many inputs are potentially useful to learn from.
The inputs used in the approach presented in [Ho et al.,
2013a] include the attitude and configuration angles from
experience and the local curvatures of predicted angles,
which give an image of the local variation of terrain ge-
ometry (we showed in [Ho et al., 2013a] that this infor-
mation was useful to anticipate potential terrain defor-
mation and better estimate the resulting rover attitude
and chassis configuration). However, other inputs such
as the velocity of the rover, may also be relevant in the
learning process. In this paper, we apply the proposed
sensitivity analysis method to this data-driven estima-
tion of terrain traversability with inclusion of the velocity
of the rover, and we validate it experimentally with data
collected using a prototype rover on a Mars-analogue
terrain. We quantify the impact that the inputs of the
original method have on the estimate, as well as the addi-
tional input considered in this study, thereby validating
the choice to add this new input. To the best of our
knowledge, this is the first time such sensitivity analysis
is conducted on a learning-based terrain traversability
estimation method.

The paper is organised as follows. Sec. 2 formulates
the proposed sensitivity analysis method. Sec. 3 outlines
the background learning framework we used as applica-
tion: a method to predict a rover’s attitude and chassis
configuration on unstructured terrain. Sec. 4 describes
the implementation of the approach and our experimen-
tal setup. In Sec. 5 we present and discuss the exper-
imental results obtained. Finally, Sec. 6 concludes the
paper.

2 Proposed Sensitivity Analysis
Approach

2.1 Analysis of Variance (ANOVA)
decomposition

We employ a functional ANOVA approach to breakdown
the estimate into a linear combination of contributions
from the learning inputs. The percentage of total con-
tribution attributed among the inputs then provides a
measure of importance of the interaction effect between
each input and the resulting estimate [Dancik and Dor-
man, 2008]. This quantifies the contributions from each
input to the variability of the resulting estimate, includ-
ing the extent at which the estimate uncertainty can be
attributed to the inputs. In our application, ANOVA
decomposes the total mean and variance of the GP esti-
mator into contributions from dependent inputs.

The concept of the ANOVA decomposition is illus-
trated with an example in Fig. 1. Consider we have
three learning inputs that contribute to the total esti-
mate (see Fig. 1(a)), this approach can tell us that In-



(a) Primary effects

(b) Interaction effects

Figure 1: ANOVA approach to breakdown the estimate
into a linear combination of contributions from learning
inputs. The orange and green boxes indicate the interac-
tion effects between Inputs 1 and 2, and between Inputs
2 and 3, respectively.

put 1 alone contributed 30% to the total estimate, In-
put 2 contributed 20%, and Input 3 contributed 15%.
Expanding the idea further, we also want to account for
the interaction effects between dependent learning in-
puts. That is, we want to see the effects of a subset of
the inputs, and also how they interact with each other to
contribute to the total estimate. For example, if we con-
sider the interaction effects between Inputs 1 and 2, and
between Inputs 2 and 3 (see Fig. 1(b)), this approach
can tell us that the first pair contributed to 12% of the
total estimate, and the second pair contributed to 9%.

Let us consider a d-dimensional vector of input vari-
ables x = (x1, ..., xd)T (d > 2). The multi-input single-
output regression problem is to find an estimate of the
output variable y(x) for any value of x, in particular
values that are not available in the training data. With
several output variables, each is treated separately. Sup-
pose that we are interested in the effect of a subset of
input variables, held in a vector xe, where e denotes the
set of subscripts of the variables of interest. The vec-
tor of remaining variables is denoted by x−e, such that
x = (xe,x−e) [Schonlau and Welch, 2006]. For exam-
ple, if our interest lies in the effects of x1 and x2, we
have xe = (x1, x2), while x−e = (x3, ..., xd). Generalis-
ing this notation, xe = (xi1 , ..., xin) where (i1, ..., in) are
n indices taken among d, and xe represents n compo-
nents of x. Let us define S as all non-empty subsets of
{1, ..., d}. {xe}e∈S represents all possible combinations
of input variables.

We can then consider the output estimate as an inte-

grable function y(x), thus expressed as:

y(x) = y0 +
∑
e∈S

ye(xe). (1)

where ye(xe) is a component of the estimate output y
that is dependent on the subset of input variables of in-
terest xe. We may then define an effect from a learning
input by “integrating out” the other inputs. Under cer-
tain conditions, this leads to a simple decomposition of
y(x) into contributions from various effects, with a cor-
responding decomposition of the total variance of y(x)
over an input region of interest X [Schonlau and Welch,
2006]. Moreover, these effects and their variance contri-
butions can be easily estimated.

To decompose the resulting estimate, first we need to
find the marginal effect ȳe(xe). This is the overall effect
of all variables in xe = (xi1 , ..., xin) on the estimate, and
is defined by integrating out all other variables [Schonlau
and Welch, 2006]:

ȳe(xe) =

∫
⊗j 6∈eXj

y(xe,x−e)
∏
j 6∈e

wj(xj)dxj for xe ∈ ⊗j∈eXj ,

(2)
where wj(xj) is a weight function that represents the
relative interest for variable xj among the components
of x, Xj denotes the values of interest for variable xj and
⊗j∈eXj is a direct product of one-dimensional regions.
To represent uniform interest across the range of values
for xj , in this paper we choose the values of wj(xj) to
be equal.

We then use Eq. (2) to decompose the resulting esti-
mate y(x) into corrected effects involving the contribu-
tions from any number of variables in x ∈ X :

y(x) = µ0 +

d∑
j=1

µj(xj) +

d−1∑
j=1

d∑
j′=j+1

µjj′(xj , xj′) + . . .

+ µ1...d(x1, . . . , xd),

(3)

where µ0 is the overall average, µj(xj) is the corrected
primary effect of a single variable xj , µjj′(xj , xj′) is the
corrected interaction effect of two variables xj and xj′

(j 6= j′), and so on [Schonlau and Welch, 2006]:

µ0 =

∫
X

y(x)w(x)dx

µj(xj) = ȳj(xj)− µ0 for xj ∈ Xj

µjj′(xj , xj′) = ȳjj′(xj , xj′)− µj(xj)− µj′(xj′)− µ0

for xj , xj′ ∈ Xj ⊗Xj′

(4)
For example, to examine the contributions from inputs

x1 and x2 on the resulting estimate, we can consider the



overall joint effect:

ȳ12(x1, x2) = µ0 + µ1(x1)+µ2(x2) + µ12(x1, x2)

for x1, x2 ∈ X1 ⊗X2

(5)

which is a linear combination of the overall average
(mean) of the estimation, the primary effect of inputs
x1 and x2 individually, and the secondary effects of the
interaction between these two inputs.

In practice, we first estimate the marginal ef-
fects ȳe(xe) using a best linear unbiased predictor
(BLUP) [Schonlau and Welch, 2006], and then compute
the corresponding estimated corrected effect by subtract-
ing all estimated lower-order corrected effects. Using
this decomposition, we can determine the impact of the
learning inputs on the resulting estimate as a function
of its interaction with other inputs.

2.2 Numerical Evaluation of the Marginal
Effects

Following the approach in [Schonlau and Welch, 2006],
y(x) can be treated as a realisation of the random func-
tion Y (x):

Y (x) = f ′(x)β + Z(x) (6)

where f(x) = [f1(x), ..., fh(x)]′ is a vector of h known
regression functions, β is a h × 1 vector of parameters
to be estimated, and Z is a Gaussian stochastic process
indexed by x. It then follows that ȳe(xe) is a realisation
of the analogously integrated random function Ȳe(xe):

Ȳe(xe) = f̄ ′e(xe)β + Z̄e(xe) for xe ∈ ⊗j∈eXj (7)

where f̄e(xe) and Z̄e(xe) can be expressed as integrals
as in Eq. (2):

f̄e(xe) =

∫
⊗j 6∈eXj

f(xe,x−e)
∏
j 6∈e

wj(xj)dxj for xe ∈ ⊗j∈eXj ,

(8)

Z̄e(xe) =

∫
⊗j 6∈eXj

Z(xe,x−e)
∏
j 6∈e

wj(xj)dxj for xe ∈ ⊗j∈eXj .

(9)
We then solve for fe and Ze in Eqs. (8) and (9) using

BLUP [Schonlau and Welch, 2006]. From the estimated
marginal effects, the primary and interaction effects can
then be estimated using Eq. (4).

2.3 Analytical Sensitivity Measure (ASM)

Global sensitivity indices are used for estimating the in-
fluence of individual or groups of variables on the re-
sulting estimate. A common example of a global sensi-
tivity index is the Sobol index [Sobol, 1990]. However,
it does not quantify the uncertainty brought by depen-
dent inputs. From the decomposition of the mean of the

estimate, an Analytical Sensitivity Measure (ASM) was
proposed in [Durrande et al., 2013] to quantify the con-
tribution of each independent learning input xj to the
estimate y(x):

Sj =
V [µj(xj)]

V [y(x))]
(10)

For dependent input variables, the ASM Sj that accounts
for both the estimate mean and uncertainty can be com-
puted as [Chastaing and Gratiet, 2013]:

Sj =
V [µj(xj)] + Cov[µj(xj), µjc(x)]

V [y(x)]
, (11)

where µjc(x) = y(x) − µj(xj). In our implementation,
we compute Sj for each learning input to determine the
impact of each xj on the resulting estimate. Note that
an ASM can also be derived for the interaction effects.

3 Application: Rover Attitude
Prediction in Partially Occluded and
Deformable terrain

Recent literature showed that an effective way to pre-
dict the rover’s response on upcoming terrain is to
learn the correlation between exteroceptive and propri-
oceptive sensor information. This concept is known
as near-to-far learning and was demonstrated in vari-
ous references, such as [Brooks and Iagnemma, 2012;
Krebs et al., 2010]. In [Ho et al., 2013a] the authors
proposed a near-to-far approach to predict the attitude
and configuration angles of a rover while addressing
the problems of incomplete terrain data and of terrain
deformation, by using two connected components (see
Fig. 2). Given incomplete terrain data, the first com-
ponent, named Rigid-Terrain Traversability Estimation
(R-TTE), provides an initial estimate of the rover con-
figuration and attitude, Φ∗rigid, before any terrain defor-

mation may occur [Ho et al., 2013b]. This is equiva-
lent to assuming that the terrain is rigid. The second
component, Rigid-to-Deformable Terrain Traversability
Estimate (R2D-TTE), then refines this prediction by
accounting for the effects of terrain deformation on
rover configuration and attitude. The final estimate
is Φ∗deform. Both processes are stochastic. For conve-
nience, in the remainder of the paper, rover configura-
tion will refer to both attitude and chassis configuration
angles.

3.1 R-TTE

The R-TTE module addresses the problem of incomplete
terrain data [Ho et al., 2013b]. It estimates a complete
map of Φ∗rigid by performing GP regression over an in-
complete map. This approach exploits the explicit corre-
lation in rover configuration during operation by learn-
ing a kernel function from experience. The estimation



Figure 2: Our approach to predict rover attitude and
configuration on terrain. Given an incomplete point
cloud, R-TTE makes an initial estimate of the configu-
ration over the entire map, assuming the terrain is rigid.
R2D-TTE then refines this estimate to account for pos-
sible terrain deformation.

scenario is set up as a GP regression problem to pre-
dict Φ∗rigid(x, y, ψ) at each position (x, y) on a Digital
Elevation Map (DEM) over different heading angles ψ.
The GP posterior (estimate) y = f∗, represented by the
mean f̄∗ and covariance cov(f∗) can be given as:

f̄∗ = K(x∗,x)[K(x,x) + σ2
nI]−1z

cov(f∗)

= K(x∗,x∗)−K(x∗,x)[K(x,x) + σ2
nI]−1K(x,x∗)

where K represents the covariance matrix evaluated us-
ing the learnt kernel function at all pairs of training
points x and query points x∗, σn is the noise variance,
and z is the training target.

3.2 R2D-TTE

The R2D-TTE module, introduced in [Ho et al., 2013a],
refines the estimate provided by R-TTE by accounting
for the effects of terrain deformation. In this paper
we extended the estimation process to exploit the lo-
cal variations in Φrigid that correlate with the actual
rover configuration resulting from terrain deformation,
i.e. Φdeform, and included driving speed as an additional
learning input. This idea is implemented by learning the
correlation between the initial prediction, Φ∗rigid, its lo-
cal variations, and experience in Φdeform collected dur-
ing training (see Fig. 3). During learning, the rover ob-
serves a patch of terrain and predicts Φ∗rigid. When the
rover traverses over this terrain, it learns the correlation
between Φ∗rigid and the experienced rover configuration
Φdeform with terrain deformation. Once the training is
complete, in operation, the rover uses the learnt corre-
lations to predict Φ∗deform from new exteroceptive data.

Learning is performed in a multi-task heteroscedastic
GP framework that considers the interaction between

Multi-input.
GP.Regression

Convolution.Between
Pairs.of.Outputs

Multi-input.
GP.Regression

Learnt
Correlation

ϕ*rigid

ϕ*rigid,curv

ϕ*deform

Tdeform

..

.

RollMulti-Input

Terrain
DeformationMulti-Input

Figure 3: R2D-TTE process to account for the effects of
terrain deformation on rover configuration, using corre-
lations learnt in experiments.

multiple training inputs and targets. We use multi-
input GP regression by Automatic Relevance Determi-
nation (ARD) to learn the correlation between the train-
ing inputs x and each component in the target z. We
use convolution processes to account for the correlations
between estimation outputs [Caruana, 1997]. This ap-
proach uses a convolution between a smoothing kernel
kq and latent functions u(z) to express each output fq:

fq(x) =

∞∫
−∞

kq (x− z)u(z)dz

We then use multiplication of Gaussian distributions to
determine the correlation between pairs of outputs as
well as between any given output and the latent func-
tion. Using these covariance matrices we perform joint-
prediction of the estimation outputs. For more details
please refer to [Ho et al., 2013a].

4 Implementation and Experimental
Setup

We implemented the ANOVA decomposition to analyse
the estimation results from R2D-TTE. Training and val-
idation data were obtained with a prototype planetary
rover navigating on a Mars-analogue terrain.

4.1 GP Learning Inputs, Targets and
Outputs

The training input x used in the GP regression within
R2D-TTE includes Φ∗rigid = {φ, θ, α1, α2}, where φ
and θ are the roll and pitch of the rover, respectively,
and the αi are angles of the joints of the chassis (see
Fig. 4(b)). It also includes the local curvatures of Φ∗rigid,
i.e. Φ∗rigid,curv, defined as the combined planform and
platform curvature of the rover configuration on the ter-
rain (see details [Ho et al., 2013a]). In this paper we con-
sider an additional input, the rover driving speed vrover,
to analyse its potential impact on the estimate:

x = [φ, φcurv, θ, θcurv, α1, α1curv
, α2, α2curv

, vrover] .



The training target z = [Φdeform, Tdeform] includes
the actual rover configuration Φdeform and the curva-
ture of Φ on deformed terrain, Tdeform, which conveys
information on the effect of terrain deformation on con-
figuration curvature.

Φdeform =
[
φdeform, θdeform, α1deform

α2deform

]
,

Tdeform = [φcurv, θcurv, α1curv
, α2curv

]
deform

,

In this paper, we focus on the analysis of the impact of
the different inputs in x on the estimation of Φdeform.

4.2 Platform - Mawson Rover

The experiments were conducted using Mawson, a
6-wheeled prototype rover platform with a rocker-bogie
chassis (see Fig. 4(a)). Mawson is approximately 80cm
long, 63cm wide, and 90cm tall. The radius of each
wheel is 5cm. It is equipped with the following sensors.
Two colour cameras and a RGB-D camera mounted on
a pan-tilt unit, tilted down ≈ 20◦. The acquired 3D
point clouds are used to generate DEMs. Two Hall-effect
encoders measure the two rear bogie angles (α1, α2 in
Fig. 4(b)). An IntersenseTM IS-1200 fuses data from a
visual camera and an inertial measurement unit to pro-
vide the 6-DOF sensor pose, including rover attitude,
with an average accuracy of 2cm in position and 1◦ in
orientation/attitude.

(a) Mawson rover (b) Chassis configuration

Figure 4: Experimental rover platform.

4.3 Test Environment

We conducted our experiments at the Marsyard, a Mars-
analogue terrain in Sydney, Australia (see Fig. 5). The
Marsyard is approximately 15m × 8m and contains
slopes, soil and rocks similar to Martian terrain. The
typical obstacle size in the Marsyard is approximately
0.05m to 0.2m in radius. Combined with the mixed sizes
in gravel granules, this represents a considerable chal-
lenge in traversability for Mawson since its wheel radius
is 0.05m.

Figure 5: Section of the Marsyard in Sydney, Australia.

4.4 Experimental Data For Learning

We performed a range of traversals over different terrain
to engage Mawson in a variety of situations that it is
likely to encounter during operation. Before the rover
traversed on the terrain, we recorded the point cloud
of the terrain using an external depth sensor. As the
rover traversed the terrain, we collected the experienced
rover configuration Φdeform using the Intersense sensor,
as well as terrain data using the onboard depth sensor.
After terrain traversal, we acquired another point cloud
of the terrain using the external depth sensor. To quan-
tify terrain deformation, we compared the DEMs gener-
ated from terrain data acquired before and after rover
traversal, after aligning them using Nearest-Neighbour
Iterative Closest-Point.

5 Experimental Results

We used R2D-TTE to predict rover configuration
Φ∗deform with terrain deformation. We then evaluated
the ability of the ANOVA approach to quantify the im-
pact of the learning inputs on the estimate. This was
performed in two steps. We first decomposed the rover
configuration estimate into a sum of contributions from
each input. We then evaluated the ASM for each in-
put as an overall measure of the input’s influence on the
rover configuration estimate.

The rover was driven at different speeds (0.5m/s to
1m/s) on varying terrain geometry and nature, to ob-
serve the impact of vrover. We also investigated the im-
pact that interaction effects between the inputs have on
the estimate, and how they vary as the experimental
situation changes. The ground truth of rover configura-
tion was obtained from the Intersense sensor (rover at-
titude) and Hall-effect encoders (chassis configuration),
see Sec. 4.2. During the experiments, the driving speed
was also recorded, and the ground truth of terrain defor-
mation was obtained using the external depth sensor, as
described in Sec. 4.4. In this validation process, the GP
hyperparameters were trained with 2500 training points.
This was chosen based on an experimental analysis of the
learning rate of the algorithm. The cross-validation was



then performed using a distinct set of 3000 points, which
correspond to about 22m of terrain traversal (about 28
times the length of the rover).

Fig. 6 illustrates the rover attitude estimated using
R-TTE and R2D-TTE in a section of traversal, with
the rover operating at different speeds. The estimation
made by R2D-TTE is able to anticipate the effects of
terrain deformation. This is particularly clear between
12.5 and 19m distance travelled (section ‘A’ in Fig. 6),
where there was significant terrain deformation (see the
large errors made by R-TTE in this segment). However,
it is unclear which of the inputs are contributing posi-
tively to the learning process, and which ones are leading
the estimate astray. For example, between 10 and 12m
distance travelled (section B in Fig. 6), it is unclear why
the estimate of rover roll deviates from the ground truth
that remained fairly constant. On the other hand, the
estimates of rover roll and pitch between 14 and 17m
(section C) are less erroneous than between 10 and 12m,
albeit in an area with a larger range of roll and pitch
variations.

5.1 Decomposing the Rover Configuration
Estimate Φ∗

deform

We first investigate the primary effects (µj(xj)) from
each learning input xj . Fig. 7 shows a decomposition
of the primary effects with the highest impact on the
resulting estimate (see Table 1). We can identify sec-
tions along the rover’s traversal in Fig. 7 where each
input is the main contributor to the estimate. In partic-
ular, in Fig. 7(b), we can identify that the components
of Φ∗rigid, i.e. {φrigid, θrigid, α1rigid, α2rigid}, contribute
significantly to the overall estimate (black line) between
14m and 17m distance travelled. From Figs. 7(a) and
(b), we can also see that the primary contribution from
Φ∗rigid has an adverse effect on the overall estimate of
φdeform and θdeform between 12 and 16m, where there
was significant terrain deformation. This indicates that
other interaction effects between the dependent inputs
are contributing to the ability of the R2D-TTE approach
to anticipate terrain deformation.

We then investigate the interaction effects from the
learning inputs. From the analysis of ASM of each input
in Sec. 5.2, we selected the sets of inputs with the three
sets of highest pair-wise and triplet-wise ASM values.

Fig. 8 shows a decomposition of the 2nd order inter-
action effects with the highest impact on the resulting
estimate of rover pitch (see Table 2). It can be seen
that the dominant interaction effect changes among the
combination of inputs along the rover’s trajectory. For
example, (φ, θ)rigid, (θ, α1)rigid, and (α1, α2)rigid are the
dominant 2nd order interaction effects from 16m to 20m
for the Pitch θ. Also, comparing the overall estimate
of φdeform and θdeform in Fig. 8 with Fig. 7(b), we can

see that the 2nd order interaction effects are much closer
to the overall effects from all inputs in x (black line in
Fig. 8). This suggests that the 2nd order interaction ef-
fects are much more effective than the primary effects
from the dependent inputs at anticipating terrain defor-
mation between 12 and 16m in this test.

We also analysed the 3rd order effects (the figure is not
shown due to lack of space). The analysis showed that
the dominant interaction effect also changed among the
combination of inputs along the rover’s trajectory. For
example, ((φ, θ)rigid, vrover) was the dominant 3rd order
interaction effect from 12m to 14m in the test shown in
Fig. 6, while (φ, θ, φcurv)rigid and (φ, α1, φcurv)rigid were
the dominant 3rd order effects from 15m to 20m.

By considering the decomposition of the rover config-
uration estimate Φ∗deform into contributions from each
input, we can identify regions where each input is con-
tributing positively or negatively to the learning process.
As a result, we are able to systematically analyse the ef-
fects of each existing input, as well as additional inputs,
on the estimate.

5.2 Analytical Sensitivity Measure for
Each Learning Input

We determined the ASM Sj that accounts for the mean
µj and uncertainty V (µj) of the decomposed contribu-
tions from each learning input to quantify their contri-
bution to the resulting estimate. Table 1 shows the an-
alytical sensitivity measure of primary effects from each
input to Φdeform. It can be seen that Φrigid in the inputs
contributes to the highest values in first order effects in
Φdeform (highlighted in Table 1). This is because Φrigid

is expected to be very similar to Φdeform in areas with
minimal terrain deformation. However, the contribution
of vrover is also significant, which validates the choice of
adding driving speed as a learning input, compared to
the original method in [Ho et al., 2013a].

Table 1: Analytical sensitivity measure Sj of primary
(first order) effects from each learning input to Φdeform.

φdeform θdeform α1deform
α2deform

(%) (%) (%) (%)
φrigid 13.4 7.7 3.9 4.1
θrigid 9.8 12.5 9.2 7.8
α1rigid 4.3 0.9 7.1 3.7
α2rigid 3.4 4.8 2.8 8.2

φrigid,curv 3.7 5.1 1.1 1.8
θrigid,curv 2.1 0.8 1.9 0.7
α1rigid,curv

1.2 2.7 4.8 1.9
α2rigid,curv

2.9 1.1 4.2 3.8
vrover 5.1 4.2 2.3 3.4∑
primary 45.9 39.8 37.3 35.4

Table 2 shows the analytical sensitivity measure of se-
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Figure 6: Prediction of each rover attitude angle using R2D-TTE (mean in green, with uncertainty in grey), compared
with ground truth (in red) and the R-TTE estimate (in blue) with rigid terrain assumption (due to lack of space,
only the attitude angles are shown).

lected interaction effects from combinations of inputs to
Φdeform (for conciseness we only show rows that contain
elements higher than 2.5%). The interaction effects with
the highest impact on the estimated rover roll and pitch
are highlighted, and the sum of the selected interaction
effects is shown at the bottom of the table. It can be
seen that the interaction effects of vrover with α1 and
α2 are among the most impactful. The interaction ef-
fects of Φrigid,curv. with other inputs are also significant,
having an analytical sensitivity measure between 50 to
65% of the highest values in the estimate of φdeform and
θdeform. It should be noted that other combinations
of interaction effects also contribute to the resulting es-
timate Φdeform, but are minor and thus not shown in
Table 2 for clarity.

6 Conclusion

In this paper, we proposed a sensitivity analysis ap-
proach built on Analysis of Variance (ANOVA) decom-
position to analyse the impact of different learning in-
puts on the estimate produced by a multi-input regres-
sion technique used for estimation, such as Gaussian pro-
cess regression. The method first decomposes the resul-
tant estimate into a multi-dimensional representation of
primary and interaction effects between the inputs, and

Table 2: Analytical sensitivity measure of selected 2nd

order interaction effects from each learning input to
Φdeform. φdef. θdef. α1def. α2def.

(%) (%) (%) (%)
(φ, θ)rigid 5.1 4.4 4.3 4.1

(φ, α1)rigid 2.8 4.3 3.7 2.9
(φ, α2)rigid 2.9 2.3 3.6 2.1
(θ, α1)rigid 1.9 1.3 4.2 4.7
(θ, α2)rigid 3.1 2.1 5.3 5.9

(θ, φcurv)rigid 0.2 3.3 0.2 0.1
(θ, θcurv)rigid 0.2 3.8 0.1 0.1
(α1, α2)rigid 0.5 0.3 4.2 3.2

(α1, α1,curv)rigid 1.5 2.1 4.2 0.2
(α1)rigid, vrover 0.6 3.7 3.2 0.1
(α2, θcurv)rigid 0.2 0.1 0.1 3.4

(α2, α2,curv)rigid 1.6 1.6 0.1 4.1
(α2)rigid, vrover 0.5 3.9 1.4 0.1∑
interaction, x ⊂ X 31 40.9 41 38.7
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Figure 7: Decomposition of primary effects on the prediction of rover attitude angles. The black line shows the
overall effects from all learning inputs in x. The coloured lines represent the primary effects from individual inputs
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then calculates the analytical sensitivity measure that
indicates the significance of each input. Since adding
extra inputs to a learning framework may come at a sig-
nificant cost, such analysis allows us to select the most
useful inputs only. We demonstrated this approach on a
technique to predict a rover’s attitude and chassis config-
uration on unstructured terrain from incomplete terrain
data, while accounting for the effects of terrain defor-
mation, which was introduced by the authors in prior
work.

We showed that terrain geometry, reflected by the
rover’s attitude and configuration, was the most informa-
tive input data, having the highest analytical sensitivity
measures as primary effect. It also had significant im-
pact as an interaction effect, when combined with driv-
ing speed. We validated the addition of the rover speed
as an extra input, by quantifying the significance of the
impact it had on the estimate.

In future work, this analytical approach will allow
us to systematically consider the utility of other poten-
tial learning inputs we are considering, such as terrain
colour and texture. We will also be able to determine
other types of possible shortcomings of the learning ap-
proach by drawing a connection between contributions
from each input and physical and/or spatial phenomena
such as terrain deformation.
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