269 research outputs found
Enhancement of Cardiac Store Operated Calcium Entry (SOCE) within Novel Intercalated Disk Microdomains in Arrhythmic Disease
Store-operated Ca2+ entry (SOCE), a major Ca2+ signaling mechanism in non-myocyte cells, has recently emerged as a component of Ca2+ signaling in cardiac myocytes. Though it has been reported to play a role in cardiac arrhythmias and to be upregulated in cardiac disease, little is known about the fundamental properties of cardiac SOCE, its structural underpinnings or effector targets. An even greater question is how SOCE interacts with canonical excitation-contraction coupling (ECC). We undertook a multiscale structural and functional investigation of SOCE in cardiac myocytes from healthy mice (wild type; WT) and from a genetic murine model of arrhythmic disease (catecholaminergic ventricular tachycardia; CPVT). Here we provide the first demonstration of local, transient Ca2+ entry (LoCE) events, which comprise cardiac SOCE. Although infrequent in WT myocytes, LoCEs occurred with greater frequency and amplitude in CPVT myocytes. CPVT myocytes also evidenced characteristic arrhythmogenic spontaneous Ca2+ waves under cholinergic stress, which were effectively prevented by SOCE inhibition. In a surprising finding, we report that both LoCEs and their underlying protein machinery are concentrated at the intercalated disk (ID). Therefore, localization of cardiac SOCE in the ID compartment has important implications for SOCE-mediated signaling, arrhythmogenesis and intercellular mechanical and electrical coupling in health and disease
Halo Excitation of He in Inelastic and Charge-Exchange Reactions
Four-body distorted wave theory appropriate for nucleon-nucleus reactions
leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is
developed. The peculiarities of the halo bound state and 3-body continuum are
fully taken into account by using the method of hyperspherical harmonics. The
procedure is applied for A=6 test-bench nuclei; thus we report detailed studies
of inclusive cross sections for inelastic He(p,p')He and
charge-exchange Li(n,p)He reactions at nucleon energy 50 MeV. The
theoretical low-energy spectra exhibit two resonance-like structures. The first
(narrow) is the excitation of the well-known three-body resonance. The
second (broad) bump is a composition of overlapping soft modes of
multipolarities whose relative weights depend on
transferred momentum and reaction type. Inelastic scattering is the most
selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps
Excitations in the Halo Nucleus He-6 Following The Li-7(gamma,p)He-6 Reaction
A broad excited state was observed in 6-He with energy E_x = 5 +/- 1 MeV and
width Gamma = 3 +/- 1 MeV, following the reaction Li-7(gamma,p)He-6. The state
is consistent with a number of broad resonances predicted by recent cluster
model calculations. The well-established reaction mechanism, combined with a
simple and transparent analysis procedure confers considerable validity to this
observation.Comment: 3 pages of LaTeX, 3 figures in PostScript, approved for publication
in Phys. Rev. C, August, 200
Reaction rate for two--neutron capture by He
Recent investigations suggest that the neutrino--heated hot bubble between
the nascent neutron star and the overlying stellar mantle of a type--II
supernova may be the site of the r--process. In the preceding --process
building up the elements to , the He(2n,)He--
and He(,n)Be--reactions bridging the instability gap at
and could be of relevance. We suggest a mechanism for
He(2n,)He and calculate the reaction rate within the
+n+n approach. The value obtained is about a factor 1.6 smaller than
the one obtained recently in the simpler direct--capture model, but is at least
three order of magnitude enhanced compared to the previously adopted value. Our
calculation confirms the result of the direct--capture calculation that under
representative conditions in the --process the reaction path proceeding
through He is negligible compared to He(n,)Be.Comment: 13 pages, 4 postscript figures, to appear in "Zeitschrift f. Physik
A", changed internet address and filename, the uuencoded postscript file
including the figures is available at
ftp://is1.kph.tuwien.ac.at/pub/ohu/twoneutron.u
Indirect Study of the 16O+16O Fusion Reaction Toward Stellar Energies by the Trojan Horse Method
The 16 O+ 16 O fusion reaction is important in terms of the explosive oxygen burning process during late evolution stage of massive stars as well as understanding of the mechanism of low-energy heavy-ion fusion reactions. We aim to determine the excitation function for the most major exit channels, α + 28 Si and p + 31 P, toward stellar energies indirectly by the Trojan Horse Method via the 16 O( 20 Ne , α 28 Si) α and 16 O( 20 Ne , p 31 P) α three-body reactions. We report preliminary results involving reaction identification, and determination of the momentum distribution of α - 16 O intercluster motion in the projectile 20 Ne nucleus
Three-body resonances in He-6, Li-6, and Be-6, and the soft dipole mode problem of neutron halo nuclei
Using the complex scaling method, the low-lying three-body resonances of
He, Li, and Be are investigated in a parameter-free microscopic
three-cluster model. In He a 2, in Li a 2 and a 1, and in
Be the 0 ground state and a 2 excited state is found. The other
experimentally known 2 state of Li cannot be localized by our present
method. We have found no indication for the existence of the predicted 1
soft dipole state in He. We argue that the sequential decay mode of He
through the resonant states of its two-body subsystem can lead to peaks in the
excitation function. This process can explain the experimental results in the
case of Li, too. We propose an experimental analysis, which can decide
between the soft dipole mode and the sequential decay mode.Comment: REVTEX, Submitted to Phys. Rev. C, 12 pages, 2 postscript figures are
available upon request. CALTECH, MAP-16
State of the Art on Prediction of Concrete Pumping
Large scale constructions needs to estimate a possibility for pumping concrete. In this paper, the state of the art on prediction of concrete pumping including analytical and experimental works is presented. The existing methods to measure the rheological properties of slip layer (or called lubricating layer) are first introduced. Second, based on the rheological properties of slip layer and parent concrete, models to predict concrete pumping (flow rate, pumping pressure, and pumpable distance) are explained. Third, influencing factors on concrete pumping are discussed with the test results of various concrete mixes. Finally, future need for research on concrete pumping is suggested.ope
- âŠ