9 research outputs found

    マングローブスズの概潮汐リズムの生理学的解析

    Get PDF
    京都大学新制・課程博士博士(理学)甲第23042号理博第4719号新制||理||1676(附属図書館)京都大学大学院理学研究科生物科学専攻(主査)教授 沼田 英治, 教授 曽田 貞滋, 准教授 森 哲学位規則第4条第1項該当Doctor of ScienceKyoto UniversityDGA

    Locomotor activity rhythms in laboratory-reared adults of the mangrove cricket, Apteronemobius asahinai

    Get PDF
    Adults of the mangrove cricket, Apteronemobius asahinai, collected in the field continuously show a circatidal rhythm in their locomotor activity. However, it remained unclear whether adult crickets reared from eggs in the laboratory, without cyclic tidal influence, show the circatidal rhythm. We show that under constant red dim light, slightly less than half of crickets showed a circatidal rhythm continuously for more than 10 days. On the other hands, Some others showed a unimodal daily rhythm either before or after the tenth day in the activity recording. Thus, some environmental factors other than the laboratory conditions should be required in order for all crickets to express a clear circatidal rhythm. Even under constant light, unimodal daily rhythm appeared. The unimodal daily rhythm was entrained to light–dark cycles in some crickets, but not in the others. Therefore, we cannot conclude whether the unimodal daily rhythm is a circadian rhythm or a rhythm derived from a circatidal rhythm with its period doubled

    Unveiling the role of differential growth in 3D morphogenesis: An inference method to analyze area expansion rate distribution in biological systems

    Get PDF
    The three-dimensional (3D) morphologies of many organs in organisms, such as the curved shapes of leaves and flowers, the branching structure of lungs, and the exoskeletal shape of insects, are formed through surface growth. Although differential growth, a mode of surface growth, has been qualitatively identified as 3D morphogenesis, a quantitative understanding of the mechanical contribution of differential growth is lacking. To address this, we developed a quantitative inference method to analyze the distribution of the area expansion rate, which governs the growth of surfaces into 3D morphology. To validate the accuracy of our method, we tested it on a basic 3D morphology that allowed for the theoretical derivation of the area expansion rate distribution, and then assessed the difference between the predicted outcome and the theoretical solution. We also applied this method to complex 3D shapes and evaluated its accuracy through numerical experiments. The findings of the study revealed a linear decrease in error on a log-log scale with an increase in the number of meshes in both evaluations. This affirmed the reliability of the predictions for meshes that are sufficiently refined. Moreover, we employed our methodology to analyze the developmental process of the Japanese rhinoceros beetle Trypoxylus dichotomus, which is characterized by differential growth regulating 3D morphogenesis. The results indicated a notably high rate of area expansion on the left and right edges of the horn primordium, which is consistent with the experimental evidence of a higher rate of cell division in these regions. Hence, these findings confirm the efficacy of the proposed method in analyzing biological systems

    Contact with water functions as a Zeitgeber for the circatidal rhythm in the mangrove cricket Apteronemobius asahinai

    Get PDF
    The mangrove cricket Apteronemobius asahinai shows a circatidal rhythm in its locomotor activity, and this rhythm was shown to be entrained to artificial tidal cycles in the laboratory. To examine the Zeitgeber for this rhythm, in the present study, crickets were fixed with insect pins to prevent their body locomotion and a water stimulus was given to them by soaking in water, while recording their locomotor activities. A single water stimulus delayed the phase when given in the middle subjective low tide and advanced the phase when given in the later subjective low tide, whereas it had only a slight effect in the subjective high tide. We conclude that contact with water functions as a Zeitgeber for the circatidal rhythm

    Unveiling the role of differential growth in 3D morphogenesis: An inference method to analyze area expansion rate distribution in biological systems

    No full text
    The three-dimensional (3D) morphologies of many organs in organisms, such as the curved shapes of leaves and flowers, the branching structure of lungs, and the exoskeletal shape of insects, are formed through surface growth. Although differential growth, a mode of surface growth, has been qualitatively identified as 3D morphogenesis, a quantitative understanding of the mechanical contribution of differential growth is lacking. To address this, we developed a quantitative inference method to analyze the distribution of the area expansion rate, which governs the growth of surfaces into 3D morphology. To validate the accuracy of our method, we tested it on a basic 3D morphology that allowed for the theoretical derivation of the area expansion rate distribution, and then assessed the difference between the predicted outcome and the theoretical solution. We also applied this method to complex 3D shapes and evaluated its accuracy through numerical experiments. The findings of the study revealed a linear decrease in error on a log-log scale with an increase in the number of meshes in both evaluations. This affirmed the reliability of the predictions for meshes that are sufficiently refined. Moreover, we employed our methodology to analyze the developmental process of the Japanese rhinoceros beetle Trypoxylus dichotomus, which is characterized by differential growth regulating 3D morphogenesis. The results indicated a notably high rate of area expansion on the left and right edges of the horn primordium, which is consistent with the experimental evidence of a higher rate of cell division in these regions. Hence, these findings confirm the efficacy of the proposed method in analyzing biological systems

    The draft genome sequence of the Japanese rhinoceros beetle Trypoxylus dichotomus septentrionalis towards an understanding of horn formation

    Get PDF
    : The Japanese rhinoceros beetle Trypoxylus dichotomus is a giant beetle with distinctive exaggerated horns present on the head and prothoracic regions of the male. T. dichotomus has been used as a research model in various fields such as evolutionary developmental biology, ecology, ethology, biomimetics, and drug discovery. In this study, de novo assembly of 615 Mb, representing 80% of the genome estimated by flow cytometry, was obtained using the 10 × Chromium platform. The scaffold N50 length of the genome assembly was 8.02 Mb, with repetitive elements predicted to comprise 49.5% of the assembly. In total, 23,987 protein-coding genes were predicted in the genome. In addition, de novo assembly of the mitochondrial genome yielded a contig of 20,217 bp. We also analyzed the transcriptome by generating 16 RNA-seq libraries from a variety of tissues of both sexes and developmental stages, which allowed us to identify 13 co-expressed gene modules. We focused on the genes related to horn formation and obtained new insights into the evolution of the gene repertoire and sexual dimorphism as exemplified by the sex-specific splicing pattern of the doublesex gene. This genomic information will be an excellent resource for further functional and evolutionary analyses, including the evolutionary origin and genetic regulation of beetle horns and the molecular mechanisms underlying sexual dimorphism
    corecore