472 research outputs found

    The \gamma-ray production in neutral-current neutrino oxygen interaction in the energy range above 100 MeV

    Full text link
    We calculate the cross section of the gamma-ray production from neutral-current neutrino-oxygen quasi-elastic interaction, ν+16ˆO→ν+p+15N∗\nu+\^{16}O \rightarrow \nu +p+^{15}N*, or ν+16O→ν+n+15O∗\nu+^{16}O \rightarrow \nu+n+^{15}O*, in which the residual nuclei (15N* or 15O*) lead to the gamma-ray emission with gamma-ray energy >6 MeV at the branching ratio of 41%. Above 200 MeV, this cross section dominates over that of gamma-ray production from the inelastic reaction, ν+16O−>ν+16O∗\nu+^{16}O->\nu+^{16}O*. In the present calculation, spectral function and the spectroscopic factors of 1p1/2,1p3/2and1s1/21p_{1/2}, 1p_{3/2} and 1s_{1/2} states are essential. The gamma-ray production is dominated by the deexcitation of 1p3/21p_{3/2} state of the residual nucleus

    Superdeformation and clustering in 40^{40}Ca studied with Antisymmetrized Molecular Dynamics

    Get PDF
    Deformed states in 40^{40}Ca are investigated with a method of antisymmetrized molecular dynamics. Above the spherical ground state, rotational bands arise from a normal deformation and a superdeformation as well as an oblate deformation. The calculated energy spectra and E2E2 transition strengths in the superdeformed band reasonably agree to the experimental data of the superdeformed band starting from the 03+0^+_3 state at 5.213 MeV. By the analysis of single-particle orbits, it is found that the superdeformed state has particle-hole nature of an 8p8p-8h8h configuration. One of new findings is parity asymmetric structure with 12^{12}C+28^{28}Si-like clustering in the superdeformed band. We predict that 12^{12}C+28^{28}Si molecular bands may be built above the superdeformed band due to the excitation of inter-cluster motion. They are considered to be higher nodal states of the superdeformed state. We also suggest negative-parity bands caused by the parity asymmetric deformation.Comment: 13 figures, submitted to Phys. Rev.

    Lepton-nucleus scattering in the impulse approximation regime

    Full text link
    We discuss theoretical calculations of electron- and neutrino-nucleus scattering, carried out using realistic nuclear spectral functions and including the effect of final state interactions. Comparison between electron scattering data and the calculated inclusive cross sections off oxygen shows that the Fermi gas model fails to provide a satisfactory description of the measured cross sections, and inclusion of nuclear dynamics is needed. The role of Pauli blocking in charged-current neutrino induced reactions at low Q2Q^2 is also analyzed.Comment: To be published in the Proceedings of NUFACT05 (Nucl. Phys. B, Proceedings Supplements

    Nuclear corrections of parton distribution functions

    Full text link
    We report global analysis results of experimental data for nuclear structure-function ratios F_2^A/F_2^{A'} and proton-nucleus Drell-Yan cross-section ratios sigma_{DY}^{pA}/sigma_{DY}^{pA'} in order to determine optimum parton distribution functions (PDFs) in nuclei. An important point of this analysis is to show uncertainties of the distributions by the Hessian method. The results indicate that the uncertainties are large for gluon distributions in the whole x region and for antiquark distributions at x>0.2. We provide a code for calculating any nuclear PDFs at given x and Q^2 for general users. They can be used for calculating high-energy nuclear reactions including neutrino-nucleus interactions, which are discussed at this workshop.Comment: 1+6 pages, LaTeX, 10 eps files, espcrc2.sty, to be published in Nucl. Phys. B Supplements, Proceedings of the Third International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region (NuInt04), Gran Sasso, Italy, March 17-21, 2004. Nuclear PDF library is available at http://hs.phys.saga-u.ac.jp/nuclp.htm
    • …
    corecore