910 research outputs found

    Sub-wavelength imaging at optical frequencies using canalization regime

    Full text link
    Imaging with sub-wavelength resolution using a lens formed by periodic metal-dielectric layered structure is demonstrated. The lens operates in canalization regime as a transmission device and it does not involve negative refraction and amplification of evanescent modes. The thickness of the lens have to be an integer number of half-wavelengths and can be made as large as required for ceratin applications, in contrast to the other sub-wavelength lenses formed by metallic slabs which have to be much smaller than the wavelength. Resolution of λ/20\lambda/20 at 600 nm wavelength is confirmed by numerical simulation for a 300 nm thick structure formed by a periodic stack of 10 nm layers of glass with ϵ=2\epsilon=2 and 5 nm layers of metal-dielectric composite with ϵ=1\epsilon=-1. Resolution of λ/60\lambda/60 is predicted for a structure with same thickness, period and operating frequency, but formed by 7.76 nm layers of silicon with ϵ=15\epsilon=15 and 7.24 nm layers of silver with ϵ=14\epsilon=-14.Comment: 4 pages, 4 figures, submitted to PR

    Surface polaritons in two-dimensional left-handed photonic crystals

    Full text link
    Using an extended plane-wave-based transfer-matrix method, the photonic band structures and the corresponding transmission spectrum of a two-dimensional left-handed photonic crystal are calculated. Comparisons between the periodic structure with a single left-handed cylindric rod are made, and many interesting similarities are found. It is shown that, due to the localized surface polaritons presented by an isolated left-handed rod, there exist many exciting physical phenomena in high-dimensional left-handed photonic crystals. As direct results of coupling of the localized surface polaritons of neighboring left-handed rod, a lot of almost dispersionless bands, anti-crossing behavior, and a zero nˉ\bar{n} gap are exhibited in the left-handed periodic structure. Moreover, in a certain frequency region, except distorted by a lot of anti-crossing behavior, there exists a continual dispersion relation, which can be explained by the long-wavelength approximation. It is also pointed out that high-dimensional left-handed photonic crystals can be used to design narrow-band filter.Comment: sign errors in equation

    Radiation pattern of a classical dipole in a photonic crystal: photon focusing

    Full text link
    The asymptotic analysis of the radiation pattern of a classical dipole in a photonic crystal possessing an incomplete photonic bandgap is presented. The far-field radiation pattern demonstrates a strong modification with respect to the dipole radiation pattern in vacuum. Radiated power is suppressed in the direction of the spatial stopband and strongly enhanced in the direction of the group velocity, which is stationary with respect to a small variation of the wave vector. An effect of radiated power enhancement is explained in terms of \emph{photon focusing}. Numerical example is given for a square-lattice two-dimensional photonic crystal. Predictions of asymptotic analysis are substantiated with finite-difference time-domain calculations, revealing a reasonable agreement.Comment: Submitted to Phys. Rev.

    Naval Postgraduate School NPSAT1 Small Satellite

    Get PDF
    Paper presented at the ESA Small Satellite Systems and Services SymposiumThe NPSAT1 mission, conceived and developed by the Naval Postgraduate School (NPS) Space Systems Academic Group (SSAG), is sponsored and executed by the DoD Space Test Program (SMC SDD). The small satellite is manifested for launch aboard the STP-1 Atlas V Mission due to launch in December 2006. The main objective of the NPSAT1 program is to provide educational opportunities for the offi cer students in the Space Systems Curricula at NPS through the design, testing, integration, and fl ight operations of a small satellite. The 82 kg (180 lbs) satellite will be earth-pointing using a novel, low-cost, 3-axis attitude control scheme. NPSAT1 will provide a platform for a number of spacecraft technology experiments, including a lithium-ion battery, a confi gurable, fault-tolerant processor (CFTP) experiment, and fl ight demonstrations of commercial, off-the-shelf (COTS) components such as microelectromechanical systems (MEMS) rate sensors and a digital camera. The spacecraft command and data handling (C&DH) subsystem is NPS-designed, featuring low-power with error-detection-and-correction (EDAC) memory, an ARM720T microprocessor, and running Linux as the operating system. Two other experiments are provided by the Naval Research Laboratory to investigate ionospheric physics. This paper presents an overview of the spacecraft, its subsystems, and the challenges of a small satellite program in a university environment.Naval Postgraduate School, Monterey, California

    Spatial distribution of Cherenkov radiation in periodic dielectric media

    Full text link
    The nontrivial dispersion relation of a periodic medium affects both the spectral and the spatial distribution of Cherenkov radiation. We present a theory of the spatial distribution of Cherenkov radiation in the far-field zone inside arbitrary three- and two-dimensional dielectric media. Simple analytical expressions for the far-field are obtained in terms of the Bloch mode expansion. Numerical examples of the Cherenkov radiation in a two-dimensional photonic crystal is presented. The developed analytical theory demonstrates good agreement with numerically rigorous finite-difference time-domain calculations.Comment: 14 pages, 5 figures, Journal of Optics A (in press

    Symmetry characterization of eigenstates in opal-based photonic crystals

    Full text link
    The complete symmetry characterization of eigenstates in bare opal systems is obtained by means of group theory. This symmetry assignment has allowed us to identify several bands that cannot couple with an incident external plane wave. Our prediction is supported by layer-KKR calculations, which are also performed: the coupling coefficients between bulk modes and externally excited field tend to zero when symmetry properties mismatch.Comment: 7 pages, 5 figures, submitted to Physical Review

    Tunable photonic band gaps with coherently driven atoms in optical lattices

    Full text link
    Optical lattice loaded with cold atoms can exhibit a tunable photonic band gap for a weak probe field under the conditions of electromagnetically induced transparency. This system possesses a number of advantageous properties, including reduced relaxation of Raman coherence and the associated probe absorption, and simultaneous enhancement of the index modulation and the resulting reflectivity of the medium. This flexible system has a potential to serve as a testbed of various designs for the linear and nonlinear photonic band gap materials at a very low light level and can be employed for realizing deterministic entanglement between weak quantum fields

    Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems

    Full text link
    We report on significant enhancement of the magnetooptical effects in gyrotropic systems of a metallic film perforated by subwavelength hole arrays and a uniform dielectric film magnetized perpendicular to its plane. Calculations, based on a rigorous coupled-wave analysis, demonstrate the Faraday and Kerr effect spectra having several resonance peaks in the near infrared range, some of them coinciding with transmittance peaks. Qualitative analysis revealed that magnetic polaritons being coupled magnetic-film waveguiding modes with surface plasmons play a crucial role in the observed effect.Comment: 10 pages, 3 figure

    Polarization switching and nonreciprocity in symmetric and asymmetric magnetophotonic multilayers with nonlinear defect

    Full text link
    A one-dimensional magnetophotonic crystal with a nonlinear defect placed either symmetrically or asymmetrically inside the structure is considered. Simultaneous effects of time-reversal nonreciprocity and nonlinear spatial asymmetry in the structure are studied. Bistable response is demonstrated in a such system, accompanied by abrupt polarization switching between two circular or elliptical polarizations for transmitted and reflected waves. The effect is explained in terms of field localization at defect-mode spectral resonances and can be used in the design of thin-film optical isolators and polarization transformation devices.Comment: 20 pages, 8 figure

    Self-optimization of optical confinement in ultraviolet photonic crystal slab laser

    Get PDF
    We studied numerically and experimentally the effects of structural disorder on the performance of ultraviolet photonic crystal slab lasers. Optical gain selectively amplifies the high-quality modes of the passive system. For these modes, the in-plane and out-of-plane leakage rates may be automatically balanced in the presence of disorder. The spontaneous optimization of in-plane and out-of-plane confinement of light in a photonic crystal slab may lead to a reduction of the lasing threshold.Comment: 5 pages, 5 figure
    corecore