8 research outputs found

    Maternal iron kinetics and maternal–fetal iron transfer in normal-weight and overweight pregnancy

    Full text link
    Background Inflammation during pregnancy may aggravate iron deficiency (ID) by increasing serum hepcidin and reducing iron absorption. This could restrict iron transfer to the fetus, increasing risk of infant ID and its adverse effects. Objectives We aimed to assess whether iron bioavailability and/or iron transfer to the fetus is impaired in overweight/obese (OW) pregnant women with adiposity-related inflammation, compared with normal-weight (NW) pregnant women. Methods In this prospective study, we followed NW (n = 43) and OW (n = 40) pregnant women who were receiving iron supplements from the 14th week of gestation to term and followed their infants to age 6 mo. We administered 57Fe and 58Fe in test meals mid-second and mid-third trimester, and measured tracer kinetics throughout pregnancy and infancy. Results In total, 38 NW and 36 OW women completed the study to pregnancy week 36, whereas 30 NW and 27 OW mother–infant pairs completed the study to 6 mo postpartum. Both groups had comparable iron status, hemoglobin, and serum hepcidin throughout pregnancy. Compared with the NW, the OW pregnant women had 1) 43% lower fractional iron absorption (FIA) in the third trimester (P = 0.033) with median [IQR] FIA of 23.9% [11.4%–35.7%] and 13.5% [10.8%–19.5%], respectively; and 2) 17% lower maternal–fetal iron transfer from the first tracer (P = 0.051) with median [IQR] maternal–fetal iron transfer of 4.8% [4.2%–5.4%] and 4.0% [3.6%–4.6%], respectively. Compared with the infants born to NW women, infants born to OW women had lower body iron stores (BIS) with median [IQR] 7.7 [6.3–8.8] and 6.6 [4.6–9.2] mg/kg body weight at age 6 mo, respectively (P = 0.024). Prepregnancy BMI was a negative predictor of maternal–fetal iron transfer (β = −0.339, SE = 0.144, P = 0.025) and infant BIS (β = −0.237, SE = 0.026, P = 0.001). Conclusions Compared with NW, OW pregnant women failed to upregulate iron absorption in late pregnancy, transferred less iron to their fetus, and their infants had lower BIS. These impairments were associated with inflammation independently of serum hepcidin

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis

    Get PDF
    Introduction Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. Methods We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. Results We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women. Pregnant women with SARS-CoV-2 infection—as compared with uninfected pregnant women—were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12). Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. Conclusions This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis.

    Get PDF
    INTRODUCTION Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. METHODS We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. RESULTS We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection-as compared with uninfected pregnant women-were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. CONCLUSIONS This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Ultrasonographic Evaluation of Cervical Length, Cervical Volume and Cervical Vascularization between 18 and 40 Weeks of Gestation

    No full text
    Objective: To evaluate the correlation of cervical length, cervical volume and cervical vascularization during pregnancyusing 3D power Dopplerultrasonography, andtoexamine the reliability of these measurements. Methods: This isacross-sectional studyof196pregnant women whodeliveredat term andhadundergonetrans- vaginal3D power Dopplerultrasonographicexaminationof thecervixoncebetween18and40 weeks’gestation. Cervical length,cervicalvolume,vascularizationindex(VI), flow index(FI)andvascularization flow index(VFI) were measured andcalculated. The reliabilityof the measurements was also evaluated. Results: Mean cervical length and volume were 35.2 mm. and 28.2 cm3 . Mean cervical VI, FI and VFI were 2.65,38.44and1.07, respectively. Cervical lengthandcervicalvolumesignificantlydecreasedduringpregnancy (Spearman’s rank correlation coefficient, Rho = -0.422 and -0.514, respectively, correlation significant <0.01). There was a minimal change inthevascular flow indicesbetween18and40 weeks’gestation(Spearman’s rank correlation coefficient, Rho, varied from 0.010 to 0.042). Both intraobserver and interobserver agreement for cervical volume measurements were excellent with intraclass correlation coefficient (ICC) values of 0.96, and 0.95respectively. Intraobserverandinterobserveragreement forvascular flow indices measurements weregood. Conclusion: Cervical length and volume significantly decreased with gestational age. Cervical vascularization tends to be increased,but without statistical significance. The measurements were reliable

    Maternal iron kinetics and maternal-fetal iron transfer in normal-weight and overweight pregnancy

    No full text
    Background: Inflammation during pregnancy may aggravate iron deficiency (ID) by increasing serum hepcidin and reducing iron absorption. This could restrict iron transfer to the fetus, increasing risk of infant ID and its adverse effects. Objectives We aimed to assess whether iron bioavailability and/or iron transfer to the fetus is impaired in overweight/obese (OW) pregnant women with adiposity-related inflammation, compared with normal-weight (NW) pregnant women.Methods: In this prospective study, we followed NW (n = 43) and OW (n = 40) pregnant women who were receiving iron supplements from the 14(th) week of gestation to term and followed their infants to age 6 mo. We administered Fe-57 and Fe-58 in test meals mid-second and mid-third trimester, and measured tracer kinetics throughout pregnancy and infancy.Results: In total, 38 NW and 36 OW women completed the study to pregnancy week 36, whereas 30 NW and 27 OW mother-infant pairs completed the study to 6 mo postpartum. Both groups had comparable iron status, hemoglobin, and serum hepcidin throughout pregnancy. Compared with the NW, the OW pregnant women had 1) 43% lower fractional iron absorption (FIA) in the third trimester (P = 0.033) with median [IQR] FIA of 23.9% [11.4%-35.7%] and 13.5% [10.8%-19.5%], respectively; and 2) 17% lower maternal-fetal iron transfer from the first tracer (P = 0.051) with median [IQR] maternal-fetal iron transfer of 4.8% [4.2%-5.4%] and 4.0% [3.6%-4.6%], respectively. Compared with the infants born to NW women, infants born to OW women had lower body iron stores (BIS) with median [IQR] 7.7 [6.3-8.8] and 6.6 [4.6-9.2] mg/kg body weight at age 6 mo, respectively (P = 0.024). Prepregnancy BMI was a negative predictor of maternal-fetal iron transfer (beta = -0.339, SE = 0.144, P = 0.025) and infant BIS (beta = -0.237, SE = 0.026, P = 0.001).Conclusions: Compared with NW, OW pregnant women failed to upregulate iron absorption in late pregnancy, transferred less iron to their fetus, and their infants had lower BIS. These impairments were associated with inflammation independently of serum hepcidin. This trial was registered at as NCT02747316.ISSN:0002-9165ISSN:1938-320

    Clinical risk factors of adverse outcomes among women with COVID-19 in the pregnancy and postpartum period: A sequential, prospective meta-analysis.

    No full text
    OBJECTIVE This sequential, prospective meta-analysis (sPMA) sought to identify risk factors among pregnant and postpartum women with COVID-19 for adverse outcomes related to: disease severity, maternal morbidities, neonatal mortality and morbidity, adverse birth outcomes. DATA SOURCES We prospectively invited study investigators to join the sPMA via professional research networks beginning in March 2020. STUDY ELIGIBILITY CRITERIA Eligible studies included those recruiting at least 25 consecutive cases of COVID-19 in pregnancy within a defined catchment area. STUDY APPRAISAL AND SYNTHESIS METHODS We included individual patient data from 21 participating studies. Data quality was assessed, and harmonized variables for risk factors and outcomes were constructed. Duplicate cases were removed. Pooled estimates for the absolute and relative risk of adverse outcomes comparing those with and without each risk factor were generated using a two-stage meta-analysis. RESULTS We collected data from 33 countries and territories, including 21,977 cases of SARS-CoV-2 infection in pregnancy or postpartum. We found that women with comorbidities (pre-existing diabetes, hypertension, cardiovascular disease) versus those without were at higher risk for COVID-19 severity and pregnancy health outcomes (fetal death, preterm birth, low birthweight). Participants with COVID-19 and HIV were 1.74 times (95% CI: 1.12, 2.71) more likely to be admitted to the ICU. Pregnant women who were underweight before pregnancy were at higher risk of ICU admission (RR 5.53, 95% CI: 2.27, 13.44), ventilation (RR 9.36, 95% CI: 3.87, 22.63), and pregnancy-related death (RR 14.10, 95% CI: 2.83, 70.36). Pre-pregnancy obesity was also a risk factor for severe COVID-19 outcomes including ICU admission (RR 1.81, 95% CI: 1.26,2.60), ventilation (RR 2.05, 95% CI: 1.20,3.51), any critical care (RR 1.89, 95% CI: 1.28,2.77), and pneumonia (RR 1.66, 95% CI: 1.18,2.33). Anemic pregnant women with COVID-19 also had increased risk of ICU admission (RR 1.63, 95% CI: 1.25, 2.11) and death (RR 2.36, 95% CI: 1.15, 4.81). CONCLUSION We found that pregnant women with comorbidities including diabetes, hypertension, and cardiovascular disease were at increased risk for severe COVID-19-related outcomes, maternal morbidities, and adverse birth outcomes. We also identified several less commonly-known risk factors, including HIV infection, pre-pregnancy underweight, and anemia. Although pregnant women are already considered a high-risk population, special priority for prevention and treatment should be given to pregnant women with these additional risk factors

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis

    Get PDF
    Introduction Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies.Methods We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale.Results We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women.Pregnant women with SARS-CoV-2 infection—as compared with uninfected pregnant women—were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12).Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias.Conclusions This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol

    Adverse maternal, fetal, and newborn outcomes among pregnant women with SARS-CoV-2 infection: an individual participant data meta-analysis

    Get PDF
    Introduction: Despite a growing body of research on the risks of SARS-CoV-2 infection during pregnancy, there is continued controversy given heterogeneity in the quality and design of published studies. Methods: We screened ongoing studies in our sequential, prospective meta-analysis. We pooled individual participant data to estimate the absolute and relative risk (RR) of adverse outcomes among pregnant women with SARS-CoV-2 infection, compared with confirmed negative pregnancies. We evaluated the risk of bias using a modified Newcastle-Ottawa Scale. Results: We screened 137 studies and included 12 studies in 12 countries involving 13 136 pregnant women. Pregnant women with SARS-CoV-2 infection—as compared with uninfected pregnant women—were at significantly increased risk of maternal mortality (10 studies; n=1490; RR 7.68, 95% CI 1.70 to 34.61); admission to intensive care unit (8 studies; n=6660; RR 3.81, 95% CI 2.03 to 7.17); receiving mechanical ventilation (7 studies; n=4887; RR 15.23, 95% CI 4.32 to 53.71); receiving any critical care (7 studies; n=4735; RR 5.48, 95% CI 2.57 to 11.72); and being diagnosed with pneumonia (6 studies; n=4573; RR 23.46, 95% CI 3.03 to 181.39) and thromboembolic disease (8 studies; n=5146; RR 5.50, 95% CI 1.12 to 27.12). Neonates born to women with SARS-CoV-2 infection were more likely to be admitted to a neonatal care unit after birth (7 studies; n=7637; RR 1.86, 95% CI 1.12 to 3.08); be born preterm (7 studies; n=6233; RR 1.71, 95% CI 1.28 to 2.29) or moderately preterm (7 studies; n=6071; RR 2.92, 95% CI 1.88 to 4.54); and to be born low birth weight (12 studies; n=11 930; RR 1.19, 95% CI 1.02 to 1.40). Infection was not linked to stillbirth. Studies were generally at low or moderate risk of bias. Conclusions: This analysis indicates that SARS-CoV-2 infection at any time during pregnancy increases the risk of maternal death, severe maternal morbidities and neonatal morbidity, but not stillbirth or intrauterine growth restriction. As more data become available, we will update these findings per the published protocol
    corecore