178 research outputs found

    Annihilation Diagrams in Two-Body Nonleptonic Decays of Charmed Mesons

    Full text link
    In the pole-dominance model for the two-body nonleptonic decays of charmed mesons DPVD \rightarrow PV and DVVD \rightarrow VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the DPPD \rightarrow PP decays vanish independently.Comment: 9 pages (+ 3 figures available upon request), UR-1316, ER-40685-766, IC/93/21

    Bulk and edge excitations of a ν=1\nu =1 Hall ferromagnet

    Full text link
    In this article, we shall focus on the collective dynamics of the fermions in a ν=1\nu = 1 quantum Hall droplet. Specifically, we propose to look at the quantum Hall ferromagnet. In this system, the electron spins are ordered in the ground state due to the exchange part of the Coulomb interaction and the Pauli exclusion principle. The low energy excitations are ferromagnetic magnons. In order to obtain an effective Lagrangian for these magnons, we shall introduce bosonic collective coordinates in the Hilbert space of many-fermion systems. These collective coordinates describe a part of the fermionic Hilbert space. Using this technique, we shall interpret the magnons as bosonic collective excitations in the Hilbert space of the many-electron Hall system. Furthermore, by considering a Hall droplet of finite extent, we shall also obtain the effective Lagrangian governing the spin collective excitations at the edge of the sample.Comment: 30 pages, plain TeX, no figure

    Field Theory On The World Sheet: Improvements And Generalizations

    Full text link
    This article is the continuation of a project of investigating planar phi^3 model in various dimensions. The idea is to reformulate them on the world sheet, and then to apply the classical (meanfield) approximation, with two goals: To show that the ground state of the model is a solitonic configuration on the world sheet, and the quantum fluctuations around the soliton lead to the formation of a transverse string. After a review of some of the earlier work, we introduce and discuss several generalizations and new results. In 1+2 dimensions, a rigorous upper bound on the solitonic energy is established. A phi^4 interaction is added to stabilize the original phi^3 model. In 1+3 and 1+5 dimensions, an improved treatment of the ultraviolet divergences is given. And significantly, we show that our approximation scheme can be imbedded into a systematic strong coupling expansion. Finally, the spectrum of quantum fluctuations around the soliton confirms earlier results: In 1+2 and 1+3 dimensions, a transverse string is formed on the world sheet.Comment: 29 pages, 5 figures, several typos and eqs.(74) and (75) are corrected, a comment added to section

    More On The Connection Between Planar Field Theory And String Theory

    Get PDF
    We continue work on the connection between world sheet representation of the planar phi^3 theory and string formation. The present article, like the earlier work, is based on the existence of a solitonic solution on the world sheet, and on the zero mode fluctuations around this solution. The main advance made in this paper is the removal of the cutoff and the transition to the continuum limit on the world sheet. The result is an action for the modes whose energies remain finite in this limit (light modes). The expansion of this action about a dense background of graphs on the world sheet leads to the formation of a string.Comment: 27 pages, 3 figure

    Quantum phase slips in one-dimensional superfluids in a periodic potential

    Full text link
    We study the decay of superflow of a one-dimensional (1D) superfluid in the presence of a periodic potential. In 1D, superflow at zero temperature can decay via quantum nucleation of phase slips even when the flow velocity is much smaller than the critical velocity predicted by mean-field theories. Applying the instanton method to the O(2) quantum rotor model, we calculate the nucleation rate of quantum phase slips Γ\Gamma. When the flow momentum pp is small, we find that the nucleation rate per unit length increases algebraically with pp as Γ/Lp2K2\Gamma/L \propto p^{2K-2}, where LL is the system size and KK is the Tomonaga-Luttinger parameter. Based on the relation between the nucleation rate and the quantum superfluid-insulator transition, we present a unified explanation on the scaling formulae of the nucleation rate for periodic, disorder, and single-barrier potentials. Using the time-evolving block decimation method, we compute the exact quantum dynamics of the superflow decay in the 1D Bose-Hubbard model at unit filling. From the numerical analyses, we show that the scaling formula is valid for the case of the Bose-Hubbard model, which can quantitatively describe Bose gases in optical lattices.Comment: 11 pages, 8 figures, Sec. V is adde

    Axial Anomaly Effect in Chiral p-wave Superconductor

    Full text link
    We analyze the chiral p-wave superconductor in the low temperature region. The superconductor has a epsilon_{x} p_{x} + i epsilon_{y} p_{y}-wave gap in two dimensional space (2D). Near the second superconducting transition point, the system could be described by a quasi-1D chiral p-wave model in 2D. The axial anomaly occurs in such a model and causes an accumulation of the quasiparticle in an inhomogeneous magnetic field. The effect is related to the winding number of the gap.Comment: 12 pages, 1 figure, RevTex. The final version is accepted for publication in J. Phys. Soc. Jp

    Assessment of in vitro biofilm formation and antifungal susceptibility of Candida albicans isolates from vulvovaginal candidiasis

    Get PDF
    Objectives Vulvovaginal candidiasis (VVC) is an inflammation of the genital mucosa, which mainly affects the vulva and vagina. Candida spp. are considered commensal fungus, however, when there is imbalance in the microbiota or the host immune system is compromised, these can become pathogenic. C. albicans is responsible for most cases of VVC and is able of expressing mechanisms which allow the colonization or infection in the host. These factors related yeasts, including the growth of strains resistant to antifungal agents and virulence attributes (such as biofilm formation) are important in the development of VVC. In this sense, the objective of this study was to evaluate the in vitro biofilm formation and susceptibility to antifungal of C. albicans isolates from patients with vulvovaginal candidiasis. Methods For the study were analyzed 30 clinical isolates of Candida albicans. The clinical isolates were separated in groups of 10 samples of the according to symptoms presented by the patients: asymptomatic (AS), vulvovaginal candidiasis (VVC) and recurrent vulvo- vaginal candidiasis (RVVC). For all isolates were analyzed biofilm formation and minimal inhibitory concentration (MIC) for fluconazole and nystatin. The MIC was performed according to M27-A3 protocol of the Clinical Laboratory Standards Institute. Biofilm forming ability was assessed through quantification of total biomass by crystal violet (CV) staining, performed on 96-well microplates containing a cellular suspension of 1 9 107 cells ml1 and incubated for 24 h at 37°C. Results Antifungal susceptibility testing is showed in table 1. The isolates were tested to the two antifungals. The MIC raging from 0.125 to 2 lg ml1 for fluconazole and 1 to 4 lg ml1 to nystatin. The figure 1 show the quantification of the total biomass. It was evident that all the C. albicans isolates were able to form biofilm, although differences occurred depending on the isolated and consequently the group. Importantly it was noted that, in general, VVC and RVVC groups had similar capacity biofilm formation. On the other hand, these groups had less total biomass (average Abs = 1,091 ` 0.88) compared with AS group (average Abs = 1,521 ` 1.32). Conclusion Although all the samples analyzed are sensitive to anti- fungals tested research of resistant strains is relevant, since recurrences are related to cases of VVC. Nystatin and fluconazole were effective in small concentrations for the isolates analysed. All samples were able to form biofilm and the average of the group of asymptomatic patients greater than the others. Thus, the capacity to form- ing biofilm is an important virulence factor in the persistence of microorganisms in infectious processes and represent an increase in resistance to antifungal and host defense

    Genotypic variability and antifungal susceptibility of Candida spp. isolated from hospital surfaces and hands of healthcare professionals

    Get PDF
    Objectives Candida spp. are responsible for 9095% of hematogenous fungal infections. In Brazil and Latin America, C. albicans is the most common specie, followed by C. parapsilosis and C. tropicalis. Infections caused by Candida spp. may have their origin in exogenous sources, transmitted to patients via contaminated infusions, biomedical devices or even by the hands of the hospital staff members. Molecular biology techniques such as Randomly Amplified Polymorphic DNA (RAPD) can show that the strains found in anatomical sites or abi- otic surfaces have the same pattern genome.Moreover, in the last decades it has been observed increasing the number of yeasts isolated from hospital environment resistant to antifungals. Thus, the aim of this study was to determine the susceptibility to antifungals and intraspecies similarity among isolates of different hospital surfaces and hands of healthcare professionals. Methods The study was conducted with 25 isolates of Candida spp.: 5 strains of C. albicans and 5 strains of C. parapsilosis isolated from hospital surfaces. 5 strains of C. albicans, 5 strains of C. parapsilosis and 5 strains of C. tropicalis isolated from hands of healthcare professionals. Professionals and surfaces belonged to intensive care units. The minimal inhibitory concentration (MIC) was determined to voriconazole (VOR), fluconazole (FLZ), amphotericin B (AMB) and micafungin (MFG) according to M27-A3 of the Clinical and Labora- tory Standards Institute (CLSI). To determine the intra-species similarity, 3 primers were used: P4 (50 -AAGAGCCCGT-30 ), OPA-18 (50AGCTGACCGT30) and OPE-18 (50GGACTGCAGA 30). RAPD pro- files were analyzed using BioNumerics software version 4.6. The study was approved by the Ethics in research involving human subjects, CAAE 0448.0.093.000-11 protocol. Results In relation to susceptibility testing (Table 1), it is important to highlight that C. parapsilosis showed 80% of MFG resistance. C. albicans and C. tropicalis showed reduced susceptibility to VOR, and resistence of the AMB was observed for C. albicans (20%). All amplifi- cations revealed distinct polymorphic bands. Genetic distances between each of the isolates were calculated and cluster analysis was used to generate a dendrogram showing relationships between them. The analysis of all primers showed similarity greater than 80% between strains of hands and hospital surfaces for intraspecies. Conclusion Our work shows that, healthy people and hospital surfaces may be colonized by different species yeast. Furthermore, the strains studied had relative resistance to antifungal drugs most frequently used in clinical practice. Finally, there was a high similarity between samples from hands (hospital staff members) and surfaces, providing an infection risk to susceptible individuals. Healthy people working in hospitals can carry yeasts on their hands with the same potential virulence, and which therefore offer the same risk of infection. This information should be considered when preventive measures are established. Attention to the colonization of hands and surfaces should not be restricted to high-risk units such as NICUs, but should also include other sections of hospitals

    Ultracold Gases of Ytterbium: Ferromagnetism and Mott States in an SU(6) Fermi System

    Get PDF
    It is argued that ultracold quantum degenerate gas of ytterbium 173^{173}Yb atoms having nuclear spin I=5/2I = 5/2 exhibits an enlarged SU(6)(6) symmetry. Within the Landau Fermi liquid theory, stability criteria against Fermi liquid (Pomeranchuk) instabilities in the spin channel are considered. Focusing on the SU(n>2)(n > 2) generalizations of ferromagnetism, it is shown within mean-field theory that the transition from the paramagnet to the itinerant ferromagnet is generically first order. On symmetry grounds, general SU(n)(n) itinerant ferromagnetic ground states and their topological excitations are also discussed. These SU(n>2)(n > 2) ferromagnets can become stable by increasing the scattering length using optical methods or in an optical lattice. However, in an optical lattice at current experimental temperatures, Mott states with different filling are expected to coexist in the same trap, as obtained from a calculation based on the SU(6)(6) Hubbard model.Comment: 4+ pages, 1 figure; v2: Improved discussion of the SU(6) symmetry-breaking patterns; v3: added further discussion on the order of the transition. Added Reference
    corecore