119 research outputs found

    Annihilation Diagrams in Two-Body Nonleptonic Decays of Charmed Mesons

    Full text link
    In the pole-dominance model for the two-body nonleptonic decays of charmed mesons D→PVD \rightarrow PV and D→VVD \rightarrow VV, it is shown that the contributions of the intermediate pseudoscalar and the axial-vector meson poles cancel each other in the annihilation diagrams in the chiral limit. In the same limit, the annihilation diagrams for the D→PPD \rightarrow PP decays vanish independently.Comment: 9 pages (+ 3 figures available upon request), UR-1316, ER-40685-766, IC/93/21

    Bulk and edge excitations of a ν=1\nu =1 Hall ferromagnet

    Full text link
    In this article, we shall focus on the collective dynamics of the fermions in a ν=1\nu = 1 quantum Hall droplet. Specifically, we propose to look at the quantum Hall ferromagnet. In this system, the electron spins are ordered in the ground state due to the exchange part of the Coulomb interaction and the Pauli exclusion principle. The low energy excitations are ferromagnetic magnons. In order to obtain an effective Lagrangian for these magnons, we shall introduce bosonic collective coordinates in the Hilbert space of many-fermion systems. These collective coordinates describe a part of the fermionic Hilbert space. Using this technique, we shall interpret the magnons as bosonic collective excitations in the Hilbert space of the many-electron Hall system. Furthermore, by considering a Hall droplet of finite extent, we shall also obtain the effective Lagrangian governing the spin collective excitations at the edge of the sample.Comment: 30 pages, plain TeX, no figure

    Soliton solutions of Calogero model in harmonic potential

    Full text link
    A classical Calogero model in an external harmonic potential is known to be integrable for any number of particles. We consider here reductions which play a role of "soliton" solutions of the model. We obtain these solutions both for the model with finite number of particles and in a hydrodynamic limit. In the latter limit the model is described by hydrodynamic equations on continuous density and velocity fields. Soliton solutions in this case are finite dimensional reductions of the hydrodynamic model and describe the propagation of lumps of density and velocity in the nontrivial background.Comment: 25 pages, 2 figure

    Chiral Anomaly and Spin Gap in One-Dimensional Interacting Fermions

    Full text link
    Semiclassical approach has been developed for the one-dimensional interacting fermion systems. Starting from the incommensurate spin density wave (SDW) mean field state for the repulsive Hubbard model in 1D, the non-Abelian bosonized Lagrangian describing the spin-charge separation is obtained. The Berry phase term is derived from the chiral anomaly, and we obtain the massless Tomonaga-Luttinger liquid in the single chain case while the spin gap opens in the double-chain system. This approach offers a new method to identify the strong-coupling fixed point, and its relation to the Abelian bosonization formalism is discussed on the spin gap state. The generalization to higher dimensions is also discussed.Comment: Revised and enlarged version. 16 pages in REVTE

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte

    Ultracold Gases of Ytterbium: Ferromagnetism and Mott States in an SU(6) Fermi System

    Get PDF
    It is argued that ultracold quantum degenerate gas of ytterbium 173^{173}Yb atoms having nuclear spin I=5/2I = 5/2 exhibits an enlarged SU(6)(6) symmetry. Within the Landau Fermi liquid theory, stability criteria against Fermi liquid (Pomeranchuk) instabilities in the spin channel are considered. Focusing on the SU(n>2)(n > 2) generalizations of ferromagnetism, it is shown within mean-field theory that the transition from the paramagnet to the itinerant ferromagnet is generically first order. On symmetry grounds, general SU(n)(n) itinerant ferromagnetic ground states and their topological excitations are also discussed. These SU(n>2)(n > 2) ferromagnets can become stable by increasing the scattering length using optical methods or in an optical lattice. However, in an optical lattice at current experimental temperatures, Mott states with different filling are expected to coexist in the same trap, as obtained from a calculation based on the SU(6)(6) Hubbard model.Comment: 4+ pages, 1 figure; v2: Improved discussion of the SU(6) symmetry-breaking patterns; v3: added further discussion on the order of the transition. Added Reference

    Topological Dislocations and Mixed State of Charge Density Waves

    Full text link
    We discuss the possibility of the ``mixed state'' in incommensurate charge density waves with three-dimensional order. It is shown that the mixed state can be created by applying an electric field perpendicular to the chains. This state consists of topological dislocations induced by the external field and is therefore similar to the mixed states of superfluids (type-II superconductor or liquid Helium II). However, the peculiar coupling of charge density waves with the electric field strongly modifies the nature of the mixed state compared to the conventional superfluids. The field and temperature dependence of the properties of the mixed state are studied, and some experimental aspects are discussed.Comment: 10 pages, Revtex format, no figures, to appear in Phys. Rev. Let

    Dynamics of waves in 1D electron systems: Density oscillations driven by population inversion

    Full text link
    We explore dynamics of a density pulse induced by a local quench in a one-dimensional electron system. The spectral curvature leads to an "overturn" (population inversion) of the wave. We show that beyond this time the density profile develops strong oscillations with a period much larger than the Fermi wave length. The effect is studied first for the case of free fermions by means of direct quantum simulations and via semiclassical analysis of the evolution of Wigner function. We demonstrate then that the period of oscillations is correctly reproduced by a hydrodynamic theory with an appropriate dispersive term. Finally, we explore the effect of different types of electron-electron interaction on the phenomenon. We show that sufficiently strong interaction [U(r)≫1/mr2U(r)\gg 1/mr^2 where mm is the fermionic mass and rr the relevant spatial scale] determines the dominant dispersive term in the hydrodynamic equations. Hydrodynamic theory reveals crucial dependence of the density evolution on the relative sign of the interaction and the density perturbation.Comment: 20 pages, 13 figure

    Fluctuation effects of gauge fields in the slave-boson t-J model

    Full text link
    We present a quantitative study of the charge-spin separation(CSS) phenomenon in a U(1) gauge theory of the t-J model of high-Tc superconductures. We calculate the critical temperature of confinement-deconfinement phase transition below which the CSS takes place.Comment: Latex, 9 pages, 3 figure

    Stochastic Quantization of Scalar Fields in Einstein and Rindler Spacetime

    Full text link
    We consider the stochastic quantization method for scalar fields defined in a curved manifold and also in a flat space-time with event horizon. The two-point function associated to a massive self-interacting scalar field is evaluated, up to the first order level in the coupling constant, for the case of an Einstein and also a Rindler Euclidean metric, respectively. Its value for the asymptotic limit of the Markov parameter is exhibited. The divergences therein are taken care of by employing a covariant stochastic regularization
    • …
    corecore