45 research outputs found

    PKA-catalyzed phosphorylation of tomosyn and its implication in Ca2+-dependent exocytosis of neurotransmitter

    Get PDF
    Neurotransmitter is released from nerve terminals by Ca2+-dependent exocytosis through many steps. SNARE proteins are key components at the priming and fusion steps, and the priming step is modulated by cAMP-dependent protein kinase (PKA), which causes synaptic plasticity. We show that the SNARE regulatory protein tomosyn is directly phosphorylated by PKA, which reduces its interaction with syntaxin-1 (a component of SNAREs) and enhances the formation of the SNARE complex. Electrophysiological studies using cultured superior cervical ganglion (SCG) neurons revealed that this enhanced formation of the SNARE complex by the PKA-catalyzed phosphorylation of tomosyn increased the fusion-competent readily releasable pool of synaptic vesicles and, thereby, enhanced neurotransmitter release. This mechanism was indeed involved in the facilitation of neurotransmitter release that was induced by a potent biological mediator, the pituitary adenylate cyclase-activating polypeptide, in SCG neurons. We describe the roles and modes of action of PKA and tomosyn in Ca2+-dependent neurotransmitter release

    Kif14 overexpression accelerates murine retinoblastoma development

    Get PDF
    The mitotic kinesin KIF14 has an essential role in the recruitment of proteins required for the final stages of cytokinesis. Genomic gain and/or overexpression of KIF14 has been documented in retinoblastoma and a number of other cancers, such as breast, lung and ovarian carcinomas, strongly suggesting its role as an oncogene. Despite evidence of oncogenic properties in vitro and in xenografts, Kif14's role in tumor progression has not previously been studied in a transgenic cancer model. Using a novel Kif14 overexpressing, simian virus 40 large T-antigen retinoblastoma (TAg-RB) double transgenic mouse model, we aimed to determine Kif14's role in promoting retinal tumor formation. Tumor initiation and development in double transgenics and control TAg-RB littermates were documented in vivo over a time course by optical coherence tomography, with subsequent ex vivo quantification of tumor burden. Kif14 overexpression led to an accelerated initiation of tumor formation in the TAg-RB model and a significantly decreased tumor doubling time (1.8 vs. 2.9 weeks). Moreover, overall percentage tumor burden was also increased by Kif14 overexpression. These data provide the first evidence that Kif14 can promote tumor formation in susceptible cells in vivo

    Regulation of SNAREs by tomosyn and ROCK: implication in extension and retraction of neurites

    Get PDF
    Extension of neurites requires the SNARE-dependent fusion of plasmalemmal precursor vesicles with the plasma membrane of growth cones. Here, we show that tomosyn localizes at the palm of growth cones and inhibits the fusion of the vesicles there, thus promoting transport of the vesicles to the plasma membrane of the leading edges of growth cones. Tomosyn localizes because ROCK activated by Rho small G protein phosphorylates syntaxin-1, which increases the affinity of syntaxin-1 for tomosyn and forms a stable complex with tomosyn, resulting in inhibition of the formation of the SNARE complex. In retraction of neurites, tomosyn localizes all over the edges of the neurites and inhibits fusion of the vesicles with the plasma membrane. Thus, tomosyn demarcates the plasma membrane by binding to syntaxin-1 phosphorylated by ROCK, and thereby regulates extension and retraction of neurites
    corecore