1 research outputs found

    Cytotoxicity of Tirapazamine (3-Amino-1,2,4-benzotriazine-1,4-dioxide)-Induced DNA Damage in Chicken DT40 Cells

    No full text
    Tirapazamine (TPZ) is an anticancer drug with highly selective cytotoxicity toward hypoxic cells. TPZ is converted to a radical intermediate under hypoxic conditions, and this intermediate interacts with intracellular macromolecules, including DNA. TPZ has been reported to indirectly induce DNA double-strand breaks (DSBs) through the formation of various intermediate DNA lesions under hypoxic conditions. Although the topoisomerase II–DNA complex has been identified as one of these intermediates, other lesions have not yet been defined. In order to obtain a deeper understanding of the mechanisms responsible for the selective cytotoxicity of TPZ toward hypoxic cells, its cellular sensitivity was systematically examined with genetically isogenic DNA-repair-deficient mutant DT40 cell lines. Our results showed that <i>tdp1</i><sup>–/–</sup>, <i>tdp2</i><sup>–/–</sup>, <i>parp1</i><sup>–/–</sup>, and <i>aptx1</i><sup>–/–</sup> cells displayed hypersensitivity to TPZ only under hypoxic conditions. These results strongly suggest that the accumulation of the topoisomerase I-trapped DNA complex, topoisomerase II-trapped DNA complex, and abortive ligation products with 5′-AMP are the potential causes of TPZ-induced hypoxic cell death. Furthermore, our genetic analysis revealed that under normoxic conditions (as well as hypoxic conditions), TPZ exhibited significant cytotoxicity toward cell lines deficient in homologous recombination, nonhomologous end joining, base excision repair, and translesion synthesis. Ascorbic acid, a radical scavenger, suppressed TPZ-induced cytotoxicity toward normoxic cells. These results suggest the involvement of oxidative DNA damage and DSBs produced by reactive oxygen species generated from superoxide, a byproduct of the oxidation of TPZ radical intermediates in normoxic cells. Collectively, our results demonstrate that TPZ induces oxidative DNA damage under normoxic and hypoxic conditions and selectively introduces abortive topoisomerase–DNA complexes and unligatable DNA ends under hypoxic conditions
    corecore