13 research outputs found

    Proteinase K goes thermo-labile

    Get PDF
    Proteinase K, originally from the fungus Tritirachium album, is a highly active serine protease with broad cleavage specificity. This enzyme is widely used to remove proteins/enzymes in nucleic acid samples. However, use of wildtype proteinase K (WTPK) in multi-step enzymatic workflows such as next generation sequencing (NGS) is limited due to its extreme thermostability and ineffective removal by heat treatment. The purpose of this study was to engineer a thermolabile Proteinase K (TLPK) as active as WTPK, which may be fully inactivated at 65°C or below to minimize DNA/RNA damage. Using molecular engineering approaches, we have successfully obtained TLPK. As shown in Figure 1, TLPK is almost as active as WTPK at 37°C using native bovine serum albumin (BSA) as substrate. Importantly, TLPK can be efficiently inactivated within the temperature range of 55°C to 65°C, which is demonstrated by loss of protease activity on bovine serum albumin (BSA) substrate (Figure 2a) and a colorimetric peptide substrate (Figure 2b) after heat treatment. Compared to WTPK, TLPK shows over 20°C more labile to heat inactivation. The melting temperature (Tm) of TLPK is also around 25°C lower than that of WTPK, decreasing from 75.9°C to 50.9°C. TLPK greatly outperforms a broad specificity protease isolated from an arctic marine microbial source, both by specific enzyme activity and thermolability. One of the TLPK applications is it can inactivate heat resistant restriction enzymes such as PvuII and PstI without affecting downstream reactions. The mainstream applications may be its incorporation into multi-step enzymatic workflows such as NGS sample preparation. Unlike WTPK, TLPK can be used to eliminate an enzyme function without contaminating the next enzymatic step in the same reaction vessel. New England Biolabs has tested TLPK and found it to simplify and improve NGS workflows. Please click Additional Files below to see the full abstract

    The Pseudomonas aeruginosa Efflux Pump MexGHI-OpmD Transports a Natural Phenazine that Controls Gene Expression and Biofilm Development

    Get PDF
    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen

    Multidrug efflux pumps:structure, function and regulation

    Get PDF
    Infections arising from multidrug-resistant pathogenic bacteria are spreading rapidly throughout the world and threaten to become untreatable. The origins of resistance are numerous and complex, but one underlying factor is the capacity of bacteria to rapidly export drugs through the intrinsic activity of efflux pumps. In this Review, we describe recent advances that have increased our understanding of the structures and molecular mechanisms of multidrug efflux pumps in bacteria. Clinical and laboratory data indicate that efflux pumps function not only in the drug extrusion process but also in virulence and the adaptive responses that contribute to antimicrobial resistance during infection. The emerging picture of the structure, function and regulation of efflux pumps suggests opportunities for countering their activities

    Bacterial Community Morphogenesis Is Intimately Linked to the Intracellular Redox State

    Get PDF
    Many microbial species form multicellular structures comprising elaborate wrinkles and concentric rings, yet the rules governing their architecture are poorly understood. The opportunistic pathogen Pseudomonas aeruginosa produces phenazines, small molecules that act as alternate electron acceptors to oxygen and nitrate to oxidize the intracellular redox state and that influence biofilm morphogenesis. Here, we show that the depth occupied by cells within colony biofilms correlates well with electron acceptor availability. Perturbations in the environmental provision, endogenous production, and utilization of electron acceptors affect colony development in a manner consistent with redox control. Intracellular NADH levels peak before the induction of colony wrinkling. These results suggest that redox imbalance is a major factor driving the morphogenesis of P. aeruginosa biofilms and that wrinkling itself is an adaptation that maximizes oxygen accessibility and thereby supports metabolic homeostasis. This type of redox-driven morphological change is reminiscent of developmental processes that occur in metazoans

    Testing biological hypotheses with embodied robots: adaptations, accidents, and by-products in the evolution of vertebrates

    Get PDF
    Evolutionary robotics allows biologists to test hypotheses about extinct animals. In our case, we modeled some of the first vertebrates, jawless fishes, in order to study the evolution of the trait after which vertebrates are named: vertebrae.

    Convergent Evolution of Hyperswarming Leads to Impaired Biofilm Formation in Pathogenic Bacteria

    Get PDF
    Most bacteria in nature live in surface-associated communities rather than planktonic populations. Nonetheless, how surface-associated environments shape bacterial evolutionary adaptation remains poorly understood. Here, we show that subjecting Pseudomonas aeruginosa to repeated rounds of swarming, a collective form of surface migration, drives remarkable parallel evolution toward a hyperswarmer phenotype. In all independently evolved hyperswarmers, the reproducible hyperswarming phenotype is caused by parallel point mutations in a flagellar synthesis regulator, FleN, which locks the naturally monoflagellated bacteria in a multiflagellated state and confers a growth rate-independent advantage in swarming. Although hyperswarmers outcompete the ancestral strain in swarming competitions, they are strongly outcompeted in biofilm formation, which is an essential trait for P. aeruginosa in environmental and clinical settings. The finding that evolution in swarming colonies reliably produces evolution of poor biofilm formers supports the existence of an evolutionary trade-off between motility and biofilm formation
    corecore