2,273 research outputs found
Chameleonic dilaton, nonequivalent frames, and the cosmological constant problem in quantum string theory
The chameleonic behaviour of the String theory dilaton is suggested. Some of
the possible consequences of the chameleonic string dilaton are analyzed in
detail. In particular, (1) we suggest a new stringy solution to the
cosmological constant problem and (2) we point out the non-equivalence of
different conformal frames at the quantum level. In order to obtain these
results, we start taking into account the (strong coupling) string loop
expansion in the string frame (S-frame), therefore the so-called form factors
are present in the effective action. The correct Dark Energy scale is recovered
in the Einstein frame (E-frame) without unnatural fine-tunings and this result
is robust against all quantum corrections, granted that we assume a proper
structure of the S-frame form factors in the strong coupling regime. At this
stage, the possibility still exists that a certain amount of fine-tuning may be
required to satisfy some phenomenological constraints. Moreover in the E-frame,
in our proposal, all the interactions are switched off on cosmological length
scales (i.e. the theory is IR-free), while higher derivative gravitational
terms might be present locally (on short distances) and it remains to be seen
whether these facts clash with phenomenology. A detailed phenomenological
analysis is definitely necessary to clarify these points
The neutron electric dipole form factor in the perturbative chiral quark model
We calculate the electric dipole form factor of the neutron in a perturbative
chiral quark model, parameterizing CP-violation of generic origin by means of
effective electric dipole moments of the constituent quarks and their
CP-violating couplings to the chiral fields. We discuss the relation of these
effective parameters to more fundamental ones such as the intrinsic electric
and chromoelectric dipole moments of quarks and the Weinberg parameter. From
the existing experimental upper limits on the neutron EDM we derive constraints
on these CP-violating parameters.Comment: 20 pages, 3 figure
On electroweak baryogenesis in the littlest Higgs model with T parity
We study electroweak baryogenesis within the framework of the littlest Higgs
model with T parity. This model has shown characteristics of a strong
first-order electroweak phase transition, which is conducive to baryogenesis in
the early Universe. In the T parity symmetric theory, there are two gauge
sectors, viz., the T-even and the T-odd ones. We observe that the effect of the
T-parity symmetric interactions between the T-odd and the T-even gauge bosons
on gauge-higgs energy functional is quite small, so that these two sectors can
be taken to be independent. The T-even gauge bosons behave like the Standard
Model gauge bosons, whereas the T-odd ones are instrumental in stabilizing the
Higgs mass. For the T-odd gauge bosons in the symmetric and asymmetric phases
and for the T-even gauge bosons in the asymmetric phase, we obtain, using the
formalism of Arnold and McLerran, very small values of the ratio, (Baryon
number violation rate/Universe expansion rate). We observe that this result, in
conjunction with the scenario of inverse phase transition in the present work
and the value of the ratio obtained from the lattice result of sphaleron
transition rate in the symmetric phase, can provide us with a plausible
baryogenesis scenario.Comment: 13 pages, 2 figures, published version, references modifie
Gravitational instability on the brane: the role of boundary conditions
An outstanding issue in braneworld theory concerns the setting up of proper
boundary conditions for the brane-bulk system. Boundary conditions (BC's)
employing regulatory branes or demanding that the bulk metric be nonsingular
have yet to be implemented in full generality. In this paper, we take a
different route and specify boundary conditions directly on the brane thereby
arriving at a local and closed system of equations (on the brane). We consider
a one-parameter family of boundary conditions involving the anisotropic stress
of the projection of the bulk Weyl tensor on the brane and derive an exact
system of equations describing scalar cosmological perturbations on a generic
braneworld with induced gravity. Depending upon our choice of boundary
conditions, perturbations on the brane either grow moderately (region of
stability) or rapidly (instability). In the instability region, the evolution
of perturbations usually depends upon the scale: small scale perturbations grow
much more rapidly than those on larger scales. This instability is caused by a
peculiar gravitational interaction between dark radiation and matter on the
brane. Generalizing the boundary conditions obtained by Koyama and Maartens, we
find for the Dvali-Gabadadze-Porrati model an instability, which leads to a
dramatic scale-dependence of the evolution of density perturbations in matter
and dark radiation. A different set of BC's, however, leads to a more moderate
and scale-independent growth of perturbations. For the mimicry braneworld,
which expands like LCDM, this class of BC's can lead to an earlier epoch of
structure formation.Comment: 35 pages, 9 figures, an appendix and references added, version to be
published in Classical and Quantum Gravit
Space-Time Foam may Violate the Principle of Equivalence
The interactions of different particle species with the foamy space-time
fluctuations expected in quantum gravity theories may not be universal, in
which case different types of energetic particles may violate Lorentz
invariance by varying amounts, violating the equivalence principle. We
illustrate this possibility in two different models of space-time foam based on
D-particle fluctuations in either flat Minkowski space or a stack of
intersecting D-branes. Both models suggest that Lorentz invariance could be
violated for energetic particles that do not carry conserved charges, such as
photons, whereas charged particles such electrons would propagate in a
Lorentz-inavariant way. The D-brane model further suggests that gluon
propagation might violate Lorentz invariance, but not neutrinos. We argue that
these conclusions hold at both the tree (lowest-genus) and loop (higher-genus)
levels, and discuss their implications for the phenomenology of quantum
gravity.Comment: 20 pages, 4 figures, the version accepted for publication in the
International Journal of Modern Physics
Inflaton perturbations in brane-world cosmology with induced gravity
We study cosmological perturbations in the brane models with an induced
Einstein-Hilbert term on a brane. We consider an inflaton confined to a de
Sitter brane in a five-dimensional Minkowski spacetime. Inflaton fluctuations
excite Kaluza-Klein modes of bulk metric perturbations with mass and where is an
integer. There are two branches ( branches) of solutions for the
background spacetime. In the branch, which includes the self-accelerating
universe, a resonance appears for a mode with due to a spin-0
perturbation with . The self-accelerating universe has a distinct
feature because there is also a helicity-0 mode of spin-2 perturbations with
. In the branch, which can be thought as the Randall-Sundrum
type brane-world with the high energy quantum corrections, there is no
resonance. At high energies, we analytically confirm that four-dimensional
Einstein gravity is recovered, which is related to the disappearance of van
Dam-Veltman-Zakharov discontinuity in de Sitter spacetime.
On sufficiently small scales, we confirm that the lineariaed gravity on the
brane is well described by the Brans-Dicke theory with in
branch and in branch, respectively, which confirms the
existence of the ghost in branch. We also study large scale perturbations.
In branch, the resonance induces a non-trivial anisotropic stress on the
brane via the projection of Weyl tensor in the bulk, but no instability is
shown to exist on the brane.Comment: 20 pages, 4 figure
Gravitational Leptogenesis
We introduce a dimension five CP violating coupling between the Ricci scalar
and fermions. This operator splits the energy level between neutrinos and
anti-neutrinos and can generate a lepton-asymmetry in the the radiation era if
heavy Majorana neutrinos decouple at the GUT scale. This operator can also
generate a lepton asymmetry during warm inflation if the light neutrinos have a
Majorana mass m_\nu \simeq 0.25 eV which is observable in double beta decay
experiments.Comment: 4 pages, no figure
Fermionic decays of sfermions: a complete discussion at one-loop order
We present a definition of an on-shell renormalization scheme for the
sfermion and chargino-neutralino sector of the Minimal Supersymmetric Standard
Model (MSSM). Then, apply this renormalization framework to the interaction
between charginos/neutralinos and sfermions. A kind of universal corrections is
identified, which allow to define effective chargino/neutralino coupling
matrices. In turn, these interactions generate (universal) non-decoupling terms
that grow as the logarithm of the heavy mass. Therefore the full MSSM spectrum
must be taken into account in the computation of radiative corrections to
observables involving these interactions. As an application we analyze the full
one-loop electroweak radiative corrections to the partial decay widths
\Gamma(\tilde{f} -> f\neut) and \Gamma(\tilde{f} -> f'\cplus) for all sfermion
flavours and generations. These are combined with the QCD corrections to
compute the corrected branching ratios of sfermions. It turns out that the
electroweak corrections can have an important impact on the partial decay
widths, as well as the branching ratios, in wide regions of the parameter
space. The precise value of the corrections is strongly dependent on the
correlation between the different particle masses.Comment: LaTeX 53 pages, 22 figures, 3 tables. Typos correcte
Emergent Geometry and Gravity from Matrix Models: an Introduction
A introductory review to emergent noncommutative gravity within Yang-Mills
Matrix models is presented. Space-time is described as a noncommutative brane
solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on
the brane arise as fluctuations of the bosonic resp. fermionic matrices around
such a background, and couple to an effective metric interpreted in terms of
gravity. Suitable tools are provided for the description of the effective
geometry in the semi-classical limit. The relation to noncommutative gauge
theory and the role of UV/IR mixing is explained. Several types of geometries
are identified, in particular "harmonic" and "Einstein" type of solutions. The
physics of the harmonic branch is discussed in some detail, emphasizing the
non-standard role of vacuum energy. This may provide new approach to some of
the big puzzles in this context. The IKKT model with D=10 and close relatives
are singled out as promising candidates for a quantum theory of fundamental
interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5
figures. V2,V3: minor corrections and improvements. V4,V5: some improvements,
refs adde
Gauge Theory of the String Geodesic Field
A relativistic string is usually represented by the Nambu-Goto action in
terms of the extremal area of a 2-dimensional timelike submanifold of Minkowski
space. Alternatively, a family of classical solutions of the string equation of
motion can be globally described in terms of the associated geodesic field. In
this paper we propose a new gauge theory for the geodesic field of closed and
open strings. Our approach solves the technical and conceptual problems
affecting previous attempts to describe strings in terms of local field
variables. The connection between the geodesic field, the string current and
the Kalb-Ramond gauge potential is discussed and clarified. A non-abelian
generalization and the generally covariant form of the model are also
discussed.Comment: 38 pages, PHYZZX, UTS-DFT-92-2
- …