4 research outputs found

    Design and Characteristic Investigation of Novel Dual Stator Pseudo-Pole Five-Phase Permanent Magnet Synchronous Generator for Wind Power Application

    Get PDF
    The main focus of this paper is to design and assess the characteristics investigation of Novel Dual Stator Pseudo-Pole Five Phase Permanent Magnet Synchronous Generator (NDSPPFP-PMSG) for wind power application. The proposed generator has a dual stator and two sets of five phase windings which enhance its power density and fault tolerant capability. The novelty of this generator is based on the fact that, eight magnetic poles are formed using only four poles of actual magnets on both the surfaces of the rotor. For the designing and optimal electromagnetic performance of the proposed generator, a Dynamic Magnetic Circuit Model (DMCM) is reported. To validate the results obtained from DMCM, Finite Element Method (FEM) has been opted owing to its high accuracy. For showing the performance superiority, the proposed generator is compared with two conventional generators namely, Dual Stator Embedded-Pole Five Phase (DSEPFP) and Single Stator Single Rotor Five Phase (SSSRFP) PMSG. To compare their performances, FEM results are considered. The electromagnetic performance namely, generated Electromotive Force(EMF), percentage(%) Total Harmonic Distortion(THD) of generated EMF, generated EMF vs speed, terminal voltage vs load current, electromagnetic torque developed on rotor vs time, %ripple content in the torque, and %efficiency vs load current are investigated for all the three generators. From these investigations, it is found that the power density (power to weight ratio) of the proposed generator is maximum.publishedVersio

    Performance analysis of dual stator six‐phase embedded‐pole permanent magnet synchronous motor for electric vehicle application

    No full text
    Abstract The motive of this study is to analyse the characteristics of a novel dual‐stator embedded‐pole six‐phase permanent magnet synchronous motor for the application of electric vehicles. A comparative analysis of two separate motor topologies, namely, dual stator embedded‐pole six‐phase permanent magnet synchronous motor and single stator single rotor surface‐mounted permanent magnet synchronous motor, is accomplished to illustrate the performance superiority of the proposed motor. Furthermore, for optimal designing of the proposed motor, a design methodology has also been presented. For the above application, the motor should retain high torque density (HTD) and high reliability. In this regard, a novel H‐Shaped flux barrier is introduced in the rotor portion, which fulfils the requirement of HTD. Moreover, the availability of two sets of the stator winding enhances the performance efficiency and ensures the proposed motor's more significant fault‐tolerating ability of the motor. For performance evaluation, the Finite Element Method analysis is chosen, as it gives appropriate and precise results. From the above analysis, it is concluded that the HTD and the proposed motor's dynamic performance are better than the above‐mentioned conventional motor

    Design and Characteristic Investigation of Novel Dual Stator Pseudo-Pole Five-Phase Permanent Magnet Synchronous Generator for Wind Power Application

    No full text
    The main focus of this paper is to design and assess the characteristics investigation of Novel Dual Stator Pseudo-Pole Five Phase Permanent Magnet Synchronous Generator (NDSPPFP-PMSG) for wind power application. The proposed generator has a dual stator and two sets of five phase windings which enhance its power density and fault tolerant capability. The novelty of this generator is based on the fact that, eight magnetic poles are formed using only four poles of actual magnets on both the surfaces of the rotor. For the designing and optimal electromagnetic performance of the proposed generator, a Dynamic Magnetic Circuit Model (DMCM) is reported. To validate the results obtained from DMCM, Finite Element Method (FEM) has been opted owing to its high accuracy. For showing the performance superiority, the proposed generator is compared with two conventional generators namely, Dual Stator Embedded-Pole Five Phase (DSEPFP) and Single Stator Single Rotor Five Phase (SSSRFP) PMSG. To compare their performances, FEM results are considered. The electromagnetic performance namely, generated Electromotive Force(EMF), percentage(%) Total Harmonic Distortion(THD) of generated EMF, generated EMF vs speed, terminal voltage vs load current, electromagnetic torque developed on rotor vs time, %ripple content in the torque, and %efficiency vs load current are investigated for all the three generators. From these investigations, it is found that the power density (power to weight ratio) of the proposed generator is maximum
    corecore