20 research outputs found

    Ninein is essential for the maintenance of the cortical progenitor character by anchoring the centrosome to microtubules

    Get PDF
    Summary The mammalian cerebral cortex develops from proliferative apical progenitor cells (APs) that exhibit cell cycle-dependent nuclear movement (interkinetic nuclear migration; INM), which may be important for efficient and continuous production of neurons. The Pax6 transcription factor plays a major role in INM by regulating various downstream molecules. We have previously observed abnormal INM and unstable localization of the centrosome in APs of the Pax6 homozygous mutant rat embryo. To understand the mechanisms of INM, we focused on the centrosomes of APs. One of the centrosomal proteins, ninein, is specifically localized in the centrosome of APs. We observed a dramatic downregulation of ninein in APs of the Pax6 mutant. Moreover, knockdown of ninein by RNAi induced ectopic distribution of reduced numbers of BrdU-positive (S-phase) and PH3-positive (M-phase) cells. Furthermore, time-lapsed imaging demonstrated that knockdown of ninein in vivo induced abnormal INM. Finally, we observed impaired microtubule regrowth in neural progenitors taken from Pax6 homozygous mutant rat embryos, which was recovered by via ninein overexpression. We also found that ninein knockdown enlarged the surface size area of apical endfeet of the APs. Our results suggest that ninein plays a role in the molecular machinery essential for INM by connecting microtubules to the centrosome

    The effects of Fabp7 and Fabp5 on postnatal hippocampal neurogenesis in the mouse

    No full text
    Abstract New neurons are continually produced after birth from neural stem/progenitor cells (NSCs/NPCs) in the hippocampal dentate gyrus (DG). Recent studies have reported that fatty acid binding protein 7 (Fabp7/brain lipid binding protein (BLBP)) is required for the maintenance of embryonic NSCs/NPCs and have identified an association between the Fabp7 gene and behavioral paradigms that correlate with hippocampal functions. However, the specific roles of Fabps in postnatal neurogenesis remain unknown. Herein, we demonstrate the effects of Fabp7, and another Fabp, Fabp5, on postnatal neurogenesis. Fabp7 and Fabp5 were detected in the subgranular zone (SGZ) of the DG, and Fabp7+ cells were less differentiated than Fabp5+ cells. We analyzed the differentiation state of NSCs/NPCs in the SGZ of 4-week-old (4w) Fabp7 knockout (7KO), Fabp5 KO (5KO), and Fabp7/Fabp5 double KO (7/5KO) mice and found that the number of NSCs/NPCs was dramatically reduced compared with wild-type mice. Although the uptake of BrdU 1 day after injection was decreased in all KO mice, the survival of BrdU+ cells 1 month after injection was increased in the 7/5KO mice compared to other three genotypes. We also observed an enhancement of neuronal differentiation in all Fabp KO mice. In addition, the proliferation and survival of NSCs/NPCs differed along the anterior-posterior axis (A-P axis). A greater number of newborn cells in the posterior region became extinct, but this tendency was not apparent in the Fabps KO mice. These data suggest that Fabp7 and Fabp5 have differential roles for proliferation and survival of the NSCs/NPCs during postnatal DG neurogenesis.</jats:p

    Motor skills mediated through cerebellothalamic tracts projecting to the central lateral nucleus

    No full text
    Abstract The cerebellum regulates complex animal behaviors, such as motor control and spatial recognition, through communication with many other brain regions. The major targets of the cerebellar projections are the thalamic regions including the ventroanterior nucleus (VA) and ventrolateral nucleus (VL). Another thalamic target is the central lateral nucleus (CL), which receives the innervations mainly from the dentate nucleus (DN) in the cerebellum. Although previous electrophysiological studies suggest the role of the CL as the relay of cerebellar functions, the kinds of behavioral functions mediated by cerebellothalamic tracts projecting to the CL remain unknown. Here, we used immunotoxin (IT) targeting technology combined with a neuron-specific retrograde labeling technique, and selectively eliminated the cerebellothalamic tracts of mice. We confirmed that the number of neurons in the DN was selectively decreased by the IT treatment. These IT-treated mice showed normal overground locomotion with no ataxic behavior. However, elimination of these neurons impaired motor coordination in the rotarod test and forelimb movement in the reaching test. These mice showed intact acquisition and flexible change of spatial information processing in the place discrimination, Morris water maze, and T-maze tests. Although the tract labeling indicated the existence of axonal collaterals of the DN-CL pathway to the rostral part of the VA/VL complex, excitatory lesion of the rostral VA/VL did not show any significant alterations in motor coordination or forelimb reaching, suggesting no requirement of axonal branches connecting to the VL/VA complex for motor skill function. Taken together, our data highlight that the cerebellothalamic tracts projecting to the CL play a key role in the control of motor skills, including motor coordination and forelimb reaching, but not spatial recognition and its flexibility

    Mechanisms of DHA transport to the brain and potential therapy to neurodegenerative diseases

    No full text
    Docosahexaenoic acid (DHA; 22:6 omega-3) is highly enriched in the brain and is required for proper brain development and function. Its deficiency has been shown to be linked with the emergence of neurological diseases. Dietary omega-3 fatty acid supplements including DHA have been suggested to improve neuronal development and enhance cognitive functions. However, mechanisms of DHA incorporation in the brain remain to be fully understood. Findings suggested that DHA is better incorporated when esterified within lysophospholipid rather than under its non-esterified form. Furthermore, DHA has the potential to be converted into diverse oxylipins with potential neuroprotective effects. Since DHA is poorly synthesized de novo, targeting the brain with specific carriers of DHA might provide novel therapeutic approaches to neurodegenerative diseases

    Maternal dietary imbalance between omega-6 and omega-3 fatty acids triggers the offspring’s overeating in mice

    Get PDF
    The increasing prevalence of obesity and its effects on our society warrant intensifying basic animal research for understanding why habitual intake of highly palatable foods has increased due to recent global environmental changes. Here, we report that pregnant mice that consume a diet high in omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and low in omega-3 (n-3) PUFAs (an n-6high/n-3low diet), whose n-6/n-3 ratio is approximately 120, induces hedonic consumption in the offspring by upregulating the midbrain dopaminergic system. We found that exposure to the n-6high/n-3low diet specifically increases the consumption of palatable foods via increased mesolimbic dopamine release. In addition, neurodevelopmental analyses revealed that this induced hedonic consumption is programmed during embryogenesis, as dopaminergic neurogenesis is increased during in utero access to the n-6high/n-3low diet. Our findings reveal that maternal consumption of PUFAs can have long-lasting effects on the offspring’s pattern for consuming highly palatable foods.This work was supported by JSPS KAKENHI Grant Numbers JP16H06276, JP17H06059, JP17J10395, JP19H05023, and JP19K20184 (to N.S.), the Grant for Young Scientists from the Japan Society of Nutrition and Food Science (to N.S.), and the Otsuka Award from the Japan Society for Lipid Nutrition (to N.S.)

    Sphere-forming capacity of EGFP<sup>+</sup> and EGFP<sup>−</sup> cells from craniofacial and trunk regions.

    No full text
    <p>(A) Schematic illustration of the experimental design for isolation and differentiation of P0-EGFP<sup>+</sup> cells from <i>P0-Cre/Floxed-EGFP</i> mouse embryos at E12.5. (B) Phase-contrast and direct EGFP fluorescence images showing spheres formed by EGFP<sup>+</sup> and EGFP<sup>−</sup> cells derived from craniofacial and trunk regions, respectively, after 5 DIV. Scale bar, 50 µm. (C, D) The percentage of sphere-forming cells assessed by culturing EGFP<sup>+</sup> and EGFP<sup>−</sup> cells from each region at a cell density of 5×10<sup>3</sup> cells/ml and counting the number of formed spheres. (mean ± SD; n = 5 per group, *p<0.05,**p<0.005). A significantly higher frequency of primary spheres (C) and secondary spheres (D) were formed by craniofacial EGFP<sup>+</sup> cells, compared with those formed by trunk EGFP<sup>+</sup> cells.</p
    corecore