3 research outputs found

    Radially dependent stray field signature of chiral magnetic skyrmions

    Get PDF
    Magnetic skyrmions are topological spin structures that arise in chiral magnetic systems which exhibit broken inversion symmetry and high spin-orbit coupling resulting in a sizable Dzyaloshinskii-Moriya interaction. Understanding the local spin texture of skyrmions is a vital metrological step in the development of skyrmionic technologies required for novel logic or storage devices in addition to providing fundamental insight into the nanoscale chiral interactions inherent to these systems. Here, we propose that there exists a radially dependent stray field signature that emanates from magnetic skyrmions. We employ quantitative magnetic force microscopy to experimentally explore this stray field signature. To corroborate the experimental observations a semianalytical model is developed which is validated against micromagnetic simulations. This unique approach provides a route to understand the unique radially dependent field signature from skyrmions, which allows an understanding of the underlying local magnetization profile to be obtained. From a practical standpoint, our results provide a rapid approach to validate outputs from numerical or micromagnetic simulations. This approach could be employed to optimize the complex matrix of magnetic parameters required for fabricating and modeling skyrmionic systems, in turn accelerating the technology readiness level of skyrmionic based devices

    A Ti/Pt/Co Multilayer Stack for Transfer Function Based Magnetic Force Microscopy Calibrations

    No full text
    Magnetic force microscopy (MFM) is a widespread technique for imaging magnetic structures with a resolution of some 10 nanometers. MFM can be calibrated to obtain quantitative (qMFM) spatially resolved magnetization data in units of A/m by determining the calibrated point spread function of the instrument, its instrument calibration function (ICF), from a measurement of a well-known reference sample. Beyond quantifying the MFM data, a deconvolution of the MFM image data with the ICF also corrects the smearing caused by the finite width of the MFM tip stray field distribution. However, the quality of the calibration depends critically on the calculability of the magnetization distribution of the reference sample. Here, we discuss a Ti/Pt/Co multilayer stack that shows a stripe domain pattern as a suitable reference material. A precise control of the fabrication process, combined with a characterization of the sample micromagnetic parameters, allows reliable calculation of the sample’s magnetic stray field, proven by a very good agreement between micromagnetic simulations and qMFM measurements. A calibrated qMFM measurement using the Ti/Pt/Co stack as a reference sample is shown and validated, and the application area for quantitative MFM measurements calibrated with the Ti/Pt/Co stack is discussed
    corecore