12 research outputs found
Indocyanine green-laden poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules incorporating reverse micelles: Effects of PEG-b-PLA composition on the nanocapsule diameter and encapsulation efficiency
Reverse micelles are thermodynamically stable systems, with a capacity to encapsulate hydrophilic molecules in their nanosized core, which is smaller than the core generally obtained with water-in-oil-emulsion droplets. Herein, we present a simple technique for the preparation of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules encapsulating a hydrophilic photosensitizer (indocyanine green, ICG), which exploits reverse micelle formation and subsequent emulsion-solvent diffusion. We establish the effect of the PEG-b-PLA composition and the co-surfactant volume on the diameter and water content of the reverse micelles. We demonstrate that the composition of PEG-b-PLA affects also the diameter and encapsulation efficiency of the resulting nanocapsules. We show that the ICG-laden nanocapsules fabricated under the most optimal conditions have a diameter of approximately 100 nm and an ICG encapsulation efficiency of 58%. We believe that the method proposed here is a promising step towards the preparation of hydrophilic drug-laden polymer nanocapsules with a small diameter and therefore suitable for use in drug delivery applications based on enhanced permeability and retention (EPR) effect-driven passive targeting
Novel current resonance DC-DC converter with voltage doubler rectifier for fuel cell system
This paper deals with a novel composite rsonance DC-DC converter for low input voltage, large input current and high output voltsge with the voltage doubler rectifier. which i developed to appl y to the power conditioner of the fuel system. The proposed DC-DC cnverter has the current and voltage resonance fnctions to reduce the switching power loss. The primary and secondary sides of the converter are composed of the current resonant full bridge circuit, and voltage doubler, respectively. For this reason, the high power efficiency of this converter can be realized under the condition of a low input voltage, large iput current and high output voltage.2010 IEEE International Conference on Sustainable Energy Technologies (ICSET) : Kandy, Sri Lanka, 2010.12.6-2010.12.
Novel series resonance DC-DC converter with voltage doubler rectifier
This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficisncy 97.7% can be realized.2010 IEEE International Conference on Sustainable Energy Technologies (ICSET) : Kandy, Sri Lanka, 2010.12.6-2010.12.
Novel composite resonance DC-DC converter with voltage doubler rectifier
This paper deals with a novel composite resonance DC-DC converter with the voltage doubler rectifier, which is developed to be applied to the power conditioner of the photovoltaic generation system. The proposed DC-DC converter has the current and voltage resonance functions. Therefore, the output voltage regulation can be achieved for the large variations of the input voltage and load. Also, this converter has the high power efficiency. The maximum power efficiency 96.1% can be realized.INTELEC 2009 - 2009 International Telecommunications Energy Conference : Incheon, South Korea, 2009.10.18-2009.10.2
Indocyanine green-laden poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules incorporating reverse micelles: Effects of PEG-b-PLA composition on the nanocapsule diameter and encapsulation efficiency
Reverse micelles are thermodynamically stable systems, with a capacity to encapsulate hydrophilic molecules in their nanosized core, which is smaller than the core generally obtained with water-in-oil-emulsion droplets. Herein, we present a simple technique for the preparation of poly(ethylene glycol)-block-polylactide (PEG-b-PLA) nanocapsules encapsulating a hydrophilic photosensitizer (indocyanine green, ICG), which exploits reverse micelle formation and subsequent emulsion-solvent diffusion. We establish the effect of the PEG-b-PLA composition and the co-surfactant volume on the diameter and water content of the reverse micelles. We demonstrate that the composition of PEG-b-PLA affects also the diameter and encapsulation efficiency of the resulting nanocapsules. We show that the ICG-laden nanocapsules fabricated under the most optimal conditions have a diameter of approximately 100 nm and an ICG encapsulation efficiency of 58%. We believe that the method proposed here is a promising step towards the preparation of hydrophilic drug-laden polymer nanocapsules with a small diameter and therefore suitable for use in drug delivery applications based on enhanced permeability and retention (EPR) effect-driven passive targeting
Mortality in rheumatoid arthritis patients with pulmonary nontuberculous mycobacterial disease: A retrospective cohort study.
ObjectiveThe aim of this study was to compare long-term mortality following diagnosis of pulmonary nontuberculous mycobacterial (NTM) disease between patients with and without rheumatoid arthritis (RA) and to evaluate predictive factors for death outcomes.MethodsWe reviewed the electronic medical records of all patients who were newly diagnosed with pulmonary NTM disease at participating institutions between August 2009 and December 2018. Patients were followed until death, loss to follow-up, or the end of the study. Taking into consideration the presence of competing risks, we used the cumulative incidence function with Gray's test and Fine-Gray regression analysis for survival analysis.ResultsA total of 225 patients (34 RA patients and 191 non-RA controls) were followed, with a mean time of 47.5 months. Death occurred in 35.3% of RA patients and 25.7% of non-RA patients. An exacerbation of pulmonary NTM disease represented the major cause of death. The estimated cumulative incidence of all-cause death at 5 years was 24% for RA patients and 23% for non-RA patients. For NTM-related death, the 5-year cumulative incidence rate was estimated to be 11% for RA patients and 18% for non-RA patients. Gray's test revealed that long-term mortality estimates were not significantly different between patient groups. Fine-Gray regression analysis showed that the predictive factors for NTM-related death were advanced age (adjusted hazards ratio 7.28 [95% confidence interval 2.91-18.20] for ≥80 years and 3.68 [1.46-9.26] for 70-80 years vs. ConclusionsRA patients with pulmonary NTM disease were not at greater risk of long-term mortality compared with non-RA patients. Rather, advanced age, male sex, causative NTM species, and cavitary NTM disease should be considered when predicting the outcomes of RA patients with pulmonary NTM disease