24 research outputs found
Translation of MMTV Gag requires nuclear events involving splicing motifs in addition to the viral Rem protein and RmRE
<p>Abstract</p> <p>Background</p> <p>Retroviral Gag proteins are encoded in introns and, because of this localization, they are subject to the default pathways of pre-mRNA splicing. Retroviruses regulate splicing and translation through a variety of intertwined mechanisms, including 5'- post-transcriptional control elements, 3'- constitutive transport elements, and viral protein RNA interactions that couple unspliced and singly spliced mRNAs to transport machinery. Sequences within the <it>gag </it>gene termed inhibitory or instability sequences also appear to affect viral mRNA stability and translation, and the action of these sequences can be countered by silent mutation or the presence of RNA interaction proteins like HIV-1 Rev. Here, we explored the requirements for mouse mammary tumor virus (MMTV) Gag expression using a combination of <it>in vivo </it>and <it>in vitro </it>expression systems.</p> <p>Results</p> <p>We show that MMTV <it>gag </it>alleles are inhibited for translation despite possessing a functional open reading frame (ORF). The block to expression was post-transcriptional and targeted the mRNA but was not a function of mRNA transport or stability. Using bicistronic reporters, we show that inhibition of <it>gag </it>expression imparted a block to both cap-dependent and cap-independent translation onto the mRNA. Direct introduction of <it>in vitro </it>synthesized <it>gag </it>mRNA resulted in translation, implying a nuclear role in inhibition of expression. The inhibition of expression was overcome by intact proviral expression or by flanking <it>gag </it>with splice sites combined with a functional Rem-Rem response element (RmRE) interaction.</p> <p>Conclusions</p> <p>Expression of MMTV Gag requires nuclear interactions involving the viral Rem protein, its cognate binding target the RmRE, and surprisingly, both a splice donor and acceptor sequence to achieve appropriate signals for translation of the mRNA in the cytoplasm.</p
Baboon model for West Nile Virus infection and vaccine evaluation
Animal models that closely mimic the human condition are of paramount significance to study pathogenic mechanisms, vaccine and therapy scenarios. This is particularly true for investigations that involve emerging infectious diseases. Nonhuman primate species represent an alternative to the more intensively investigated rodent animal models and in a number of instances have been shown to represent a more reliable predictor of the human response to infection. West Nile virus (WNV) has emerged as a new pathogen in the Americas. It has a 5% fatality rate, predominantly in the elderly and immune compromised. Typically, infections are cleared by neutralizing antibodies, which suggests that a vaccine would be efficacious. Previously, only macaques had been evaluated as a primate model for WNV vaccine design. The macaques did not develop WNV disease nor express the full complement of IgG subclasses that is found in humans. We therefore explored baboons, which exhibit the similar four IgG subclasses observed in humans as a new model for WNV infection and vaccine evaluation. In this present report, we describe the experimental infection of baboons with WNV and test the efficacy of an inactivated WNV vaccination strategy. All experimentally infected animals developed transient viremia and subsequent neutralizing antibodies. Anti-WNV IgM antibodies peaked at 20 days post-infection. Anti-WNV IgG antibodies appeared later and persisted past 60 days. Prior vaccination with chemically inactivated virus induced neutralizing titers and a fast, high titer IgG recall response, which resulted in lower viremia upon challenge. This report is the first to describe the development of the baboon model for WNV experimental infection and the utility of this model to characterize the immunologic response against WNV and a candidate WNV vaccine
Baboon model for West Nile Virus infection and vaccine evaluation
Animal models that closely mimic the human condition are of paramount significance to study pathogenic mechanisms, vaccine and therapy scenarios. This is particularly true for investigations that involve emerging infectious diseases. Nonhuman primate species represent an alternative to the more intensively investigated rodent animal models and in a number of instances have been shown to represent a more reliable predictor of the human response to infection. West Nile virus (WNV) has emerged as a new pathogen in the Americas. It has a 5% fatality rate, predominantly in the elderly and immune compromised. Typically, infections are cleared by neutralizing antibodies, which suggests that a vaccine would be efficacious. Previously, only macaques had been evaluated as a primate model for WNV vaccine design. The macaques did not develop WNV disease nor express the full complement of IgG subclasses that is found in humans. We therefore explored baboons, which exhibit the similar four IgG subclasses observed in humans as a new model for WNV infection and vaccine evaluation. In this present report, we describe the experimental infection of baboons with WNV and test the efficacy of an inactivated WNV vaccination strategy. All experimentally infected animals developed transient viremia and subsequent neutralizing antibodies. Anti-WNV IgM antibodies peaked at 20 days post-infection. Anti-WNV IgG antibodies appeared later and persisted past 60 days. Prior vaccination with chemically inactivated virus induced neutralizing titers and a fast, high titer IgG recall response, which resulted in lower viremia upon challenge. This report is the first to describe the development of the baboon model for WNV experimental infection and the utility of this model to characterize the immunologic response against WNV and a candidate WNV vaccine
The prototype HIV-1 maturation inhibitor, bevirimat, binds to the CA-SP1 cleavage site in immature Gag particles
<p>Abstract</p> <p>Background</p> <p>Bevirimat, the prototype Human Immunodeficiency Virus type 1 (HIV-1) maturation inhibitor, is highly potent in cell culture and efficacious in HIV-1 infected patients. In contrast to inhibitors that target the active site of the viral protease, bevirimat specifically inhibits a single cleavage event, the final processing step for the Gag precursor where p25 (CA-SP1) is cleaved to p24 (CA) and SP1.</p> <p>Results</p> <p>In this study, photoaffinity analogs of bevirimat and mass spectrometry were employed to map the binding site of bevirimat to Gag within immature virus-like particles. Bevirimat analogs were found to crosslink to sequences overlapping, or proximal to, the CA-SP1 cleavage site, consistent with previous biochemical data on the effect of bevirimat on Gag processing and with genetic data from resistance mutations, in a region predicted by NMR and mutational studies to have α-helical character. Unexpectedly, a second region of interaction was found within the Major Homology Region (MHR). Extensive prior genetic evidence suggests that the MHR is critical for virus assembly.</p> <p>Conclusions</p> <p>This is the first demonstration of a direct interaction between the maturation inhibitor, bevirimat, and its target, Gag. Information gained from this study sheds light on the mechanisms by which the virus develops resistance to this class of drug and may aid in the design of next-generation maturation inhibitors.</p
Polymorphisms in Gag spacer peptide 1 confer varying levels of resistance to the HIV- 1maturation inhibitor bevirimat
Background: The maturation inhibitor bevirimat (BVM) potently inhibits human immunodeficiency virus type 1 (HIV-1) replication by blocking capsid-spacer peptide 1 (CA-SP1) cleavage. Recent clinical trials demonstrated that a significant proportion of HIV-1-infected patients do not respond to BVM. A patient’s failure to respond correlated with baseline polymorphisms at SP1 residues 6-8. Results: In this study, we demonstrate that varying levels of BVM resistance are associated with point mutations at these residues. BVM susceptibility was maintained by SP1-Q6A, -Q6H and -T8A mutations. However, an SP1-V7A mutation conferred high-level BVM resistance and SP1-V7M and T8Δ mutations conferred intermediate levels of BVM resistance. Conclusions: Future exploitation of the CA-SP1 cleavage site as an antiretroviral drug target will need to overcome the baseline variability in the SP1 region of Gag.Publisher PDFPeer reviewe
Rescue of internal scaffold-deleted Mason-Pfizer monkey virus particle production by plasma membrane targeting
AbstractThe Mason-Pfizer monkey virus (M-PMV) Gag protein follows a morphogenesis pathway in which immature capsids are preassembled within the cytoplasm before interaction with and budding through the plasma membrane. Intracytoplasmic assembly is facilitated by sequences within the p12 domain of Gag that we have termed the Internal Scaffold Domain (ISD). If M-PMV utilizes an ISD then what provides the equivalent function for most other retroviruses that assemble at the plasma membrane? To investigate the possibility that the membrane itself fulfills this role, we have combined functional deletion of the ISD with a mutation that disrupts intracellular targeting or with a plasma membrane targeting signal. By either modification, targeting of ISD-deleted Gag to the plasma membrane restores particle production. These results provide support for a model in which the plasma membrane and the D-type ISD provide an interchangeable scaffold-like function in retrovirus assembly
Kinetic Analysis of the Role of Intersubunit Interactions in Human Immunodeficiency Virus Type 1 Capsid Protein Assembly In Vitro
The human immunodeficiency virus type 1 (HIV-1) capsid protein (CA) plays a crucial role in both assembly and maturation of the virion. Numerous recent studies have focused on either the soluble form of CA or the polymer end product of in vitro CA assembly. The CA polymer, in particular, has been used to study CA-CA interactions because it is a good model for the CA interactions within the virion core. However, analysis of the process of in vitro CA assembly can yield valuable insights into CA-CA interactions and the mechanism of core assembly. We describe here a method for the analysis of CA assembly kinetics wherein the progress of assembly is monitored by using turbidity. At pH 7.0 the addition of either of the isolated CA domains (i.e., the N or the C domain) to an assembly reaction caused a decrease in the assembly rate by competing for binding to the full-length CA protein. At pH 8.0 the addition of the isolated C domain had a similar inhibitory affect on CA assembly. However, at pH 8.0 the isolated N domain had no affect on the rate of CA assembly but, when mixed with the C domain, it alleviated the C-domain inhibition. These data provide biochemical evidence for a pH-sensitive homotypic N-domain interaction, as well as for an N- and C-domain interaction