10,644 research outputs found

    Phase mixing of shear Alfvén waves as a new mechanism for electron acceleration in collisionless, kinetic plasmas

    Get PDF
    Particle-in-cell (kinetic) simulations of shear Alfv´en wave (AW) interaction with one-dimensional, across the uniform-magnetic field, density inhomogeneity (phase mixing) in collisionless plasma were performed for the first time. As a result, a new electron acceleration mechanism is discovered. Progressive distortion of the AW front, due to the differences in local Alfv´en speed, generates electrostatic fields nearly parallel to the magnetic field, which accelerate electrons via Landau damping. Surprisingly, the amplitude decay law in the inhomogeneous regions, in the kinetic regime, is the same as in the MHD approximation described by Heyvaerts and Priest (1983 Astron. Astrophys. 117 220)

    Quantum Monte Carlo study for multiorbital systems with preserved spin and orbital rotational symmetries

    Full text link
    We propose to combine the Trotter decomposition and a series expansion of the partition function for Hund's exchange coupling in a quantum Monte Carlo (QMC) algorithm for multiorbital systems that preserves spin and orbital rotational symmetries. This enables us to treat the Hund's (spin-flip and pair-hopping) terms, which is difficult in the conventional QMC method. To demonstrate this, we first apply the algorithm to study ferromagnetism in the two-orbital Hubbard model within the dynamical mean-field theory (DMFT). The result reveals that the preservation of the SU(2) symmetry in Hund's exchange is important, where the Curie temperature is grossly overestimated when the symmetry is degraded, as is often done, to Ising (Z2_2). We then calculate the t2gt_{2g} spectral functions of Sr2_2RuO4_4 by a three-band DMFT calculation with tight-binding parameters taken from the local density approximation with proper rotational symmetry.Comment: 9 pages, 9 figures. Typos corrected, some comments and references adde

    Field-induced long-range order in the S=1 antiferromagnetic chain

    Full text link
    The quasi-one dimensional S=1 antiferromagnet in magnetic field H is investigated with the exact diagonalization of finite chains and the mean field approximation for the interchain interaction. In the presence of the single-ion anisotropy D, the full phase diagram in the HTHT plane is presented for H \parallel D and H \perp D. The shape of the field-induced long-range ordered phase is revealed to be quite different between the two cases, as observed in the recent experiment of NDMAP. The estimated ratio of the interchain and intrachain couplings of NDMAP (J'/J ~ 10^{-3}) is consistent with the neutron scattering measurement.Comment: 4 pages, Revtex, with 6 eps figure

    Field-Induced Transition in the S=1 Antiferromagnetic Chain with Single-Ion Anisotropy in a Transverse Magnetic Field

    Full text link
    The field-induced transition in one-dimensional S=1 Heisenberg antiferromagnet with single-ion anisotropy in the presence of a transverse magnetic field is obtained on the basis of the Schwinger boson mean-field theory. The behaviors of the specific heat and susceptibility as functions of temperature as well as the applied transverse field are explored, which are found to be different from the results obtained under a longitudinal field. The anomalies of the specific heat at low temperatures, which might be an indicative of a field-induced transition from a Luttinger liquid phase to an ordered phase, are explicitly uncovered under the transverse field. A schematic phase diagram is proposed. The theoretical results are compared with experimental observations.Comment: Revtex, 7 figure

    Shear and bulk viscosities for pure glue matter

    Full text link
    Shear η\eta and bulk ζ\zeta viscosities are calculated in a quasiparticle model within a relaxation time approximation for pure gluon matter. Below TcT_c the confined sector is described within a quasiparticle glueball model. Particular attention is paid to behavior of the shear and bulk viscosities near TcT_c. The constructed equation of state reproduces the first-order phase transition for the glue matter. It is shown that with this equation of state it is possible to describe the temperature dependence of the shear viscosity to entropy ratio η/s\eta/s and the bulk viscosity to entropy ratio ζ/s\zeta/s in reasonable agreement with available lattice data but absolute values of the ζ/s\zeta/s ratio underestimate the upper limits of this ratio in the lattice measurements typically by an order of magnitude.Comment: 8 pages, 4 figures; the published versio

    Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems

    Full text link
    We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson model (IAM) with non-Kramers doublet ground state of the f2^2 configuration under the tetragonal crystalline electric field (CEF). The low energy spectrum is explained by a combination of the NFL and the local-Fermi-liquid parts which are independent with each other. The NFL part of the spectrum has the same form to that of two-channel-Kondo model (TCKM). We have a parameter range that the IAM shows the lnT- \ln T divergence of the magnetic susceptibility together with the positive magneto resistance. We point out a possibility that the anomalous properties of Ux_xTh1x_{1-x}Ru2_2Si2_2 including the decreasing resistivity with decreasing temperature can be explained by the NFL scenario of the TCKM type. We also investigate an effect of the lowering of the crystal symmetry. It breaks the NFL behavior at around the temperature, δ/10\delta /10, where δ\delta is the orthorhombic CEF splitting. The NFL behavior is still expected above the temperature, δ/10\delta/10.Comment: 25 pages, 12 figure
    corecore