215 research outputs found

    Methylovulum miyakonense gen. nov., sp. nov., a type I methanotroph isolated from forest soil.

    Get PDF
    A novel methanotroph, designated strain HT12(T), was isolated from forest soil in Japan. Cells of strain HT12(T) were Gram-reaction-negative, aerobic, non-motile, coccoid and formed pale-brown colonies. The strain grew only with methane and methanol as sole carbon and energy sources. Cells grew at 5-34 °C (optimum 24-32 °C). The strain possessed both particulate and soluble methane monooxygenases and assimilated formaldehyde using the ribulose monophosphate pathway. The major cellular fatty acids were C(16 : 0) (46.9 %) and C(14 : 0) (34.2 %), whereas unsaturated C(16) fatty acids, typical of type I methanotrophs, were absent. Comparative 16S rRNA gene sequence analysis showed that the most closely related strains were Methylosoma difficile LC 2(T) (93.1 % sequence similarity) and Methylobacter tundripaludum SV96(T) (92.6 % similarity). Phylogenetic analysis based on the pmoA gene indicated that strain HT12(T) formed a distinct lineage within the type I methanotrophs and analysis of the deduced pmoA amino acid sequence of strain HT12(T) showed that it had a 7 % divergence from that of its most closely related species. The DNA G+C content was 49.3 mol%. Based on this evidence, strain HT12(T) represents a novel species and genus of the family Methylococcaceae, for which the name Methylovulum miyakonense gen. nov., sp. nov. is proposed. The type strain of the type species is HT12(T) ( = NBRC 106162(T)  = DSM 23269(T)  = ATCC BAA-2070(T))

    Yeast methylotrophy: metabolism, gene regulation and peroxisome homeostasis.

    Get PDF
    Eukaryotic methylotrophs, which are able to obtain all the carbon and energy needed for growth from methanol, are restricted to a limited number of yeast species. When these yeasts are grown on methanol as the sole carbon and energy source, the enzymes involved in methanol metabolism are strongly induced, and the membrane-bound organelles, peroxisomes, which contain key enzymes of methanol metabolism, proliferate massively. These features have made methylotrophic yeasts attractive hosts for the production of heterologous proteins and useful model organisms for the study of peroxisome biogenesis and degradation. In this paper, we describe recent insights into the molecular basis of yeast methylotrophy

    Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii

    Get PDF
    The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256–292 or Δ107–237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1–20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA

    Stress resistance and C1 metabolism involved in plant colonization of a methanotroph Methylosinus sp. B4S.

    Get PDF
    Methanotrophs are widespread and have been isolated from various environments including the phyllosphere. In this study, we characterized the plant colonization by Methylosinus sp. B4S, an α-proteobacterial methanotroph isolated from plant leaf. The gfp-tagged Methylosinus sp. B4S cells were observed to colonize Arabidopsis leaf surfaces by forming aggregates. We cloned and sequenced the general stress response genes, phyR, nepR and ecfG, from Methylosinus sp. B4S. In vitro analysis showed that the phyR expression level was increased after heat shock challenge, and phyR was shown to be involved in resistance to heat shock and UV light. In the phyllospheric condition, the gene expression level of phyR as well as mmoX and mxaF was found to be relatively high, compared with methane-grown liquid cultures. The phyR-deletion strain as well as the wild-type strain inoculated on Arabidopsis leaves proliferated at the initial phase and then gradually decreased during plant colonization. These results have shed light firstly on the importance of general stress resistance and C1 metabolism in methanotroph living in the phyllosphere

    Predictive Markers for the Recurrence of Nonmuscle Invasive Bladder Cancer Treated with Intravesical Therapy

    Get PDF
    High recurrence rate is one representative characteristic of bladder cancer. Intravesical therapy after transurethral resection is often performed in patients with nonmuscle invasive bladder cancer (NMIBC) to prevent recurrence. Bacillus Calmette-Guerin (BCG) and several anticancer/antibiotic agents, such as mitomycin C and epirubicin, are commonly used for this therapy. BCG treatment demonstrates strong anticancer effects. However, it is also characterized by a high frequency of adverse events. On the other hand, although intravesical therapies using other anticancer and antibiotic agents are relatively safe, their anticancer effects are lower than those obtained using BCG. Thus, the appropriate selection of agents for intravesical therapy is important to improve treatment outcomes and maintain the quality of life of patients with NMIBC. In this review, we discuss the predictive value of various histological and molecular markers for recurrence after intravesical therapy in patients with NMIBC

    Yeast Hog1 proteins are sequestered in stress granules during high-temperature stress

    Get PDF
    The yeast high-osmolarity glycerol (HOG) pathway plays a central role in stress responses. It is activated by various stresses, including hyperosmotic stress, oxidative stress, high-temperature stress and exposure to arsenite. Hog1, the crucial MAP kinase of the pathway, localizes to the nucleus in response to high osmotic concentrations, i.e. high osmolarity; but, otherwise, little is known about its intracellular dynamics and regulation. By using the methylotrophic yeast Candida boidinii, we found that CbHog1-Venus formed intracellular dot structures after high-temperature stress in a reversible manner. Microscopic observation revealed that CbHog1-mCherry colocalized with CbPab1-Venus, a marker protein of stress granules. Hog1 homologs in Pichia pastoris and Schizosaccharomyces pombe also exhibited similar dot formation under high-temperature stress, whereas Saccharomyces cerevisiae Hog1 (ScHog1)-GFP did not. Analysis of CbHog1-Venus in C. boidinii revealed that a β-sheet structure in the N-terminal region was necessary and sufficient for its localization to stress granules. Physiological studies revealed that sequestration of activated Hog1 proteins in stress granules was responsible for downregulation of Hog1 activity under high-temperature stress

    Reconsideration of Hormonal Therapy in the Era of Next‐ Generation Hormonal Therapy

    Get PDF
    Hormonal therapy is a major and effective tool in the treatment of prostate cancer patients. This is especially true for patients in the advanced stages of disease. Unfortunately, almost all prostate cancer cells will develop into castration‐resistant prostate cancer (CRPC) despite continued therapy and suppression of testosterone levels. Up until 5–6 years ago, there was little effective therapy for the treatment of CRPC patients. However, recently, a variety of methodologies and drugs such as cabazitaxel and sipuleucel‐T have been approved globally for the treatment of CRPC. Two novel drugs, abiraterone acetate and enzartamide, have also become available as potential treatment options. However, the anticancer effects of these two drugs are not always satisfactory in terms of prolonging survival. These drugs are also associated with adverse events and are expensive when compared with the costs of previously used anticancer drugs. In this section, we pay particular attention to hormonal therapies that do not include the use of abiraterone acetate or enzartamide. We believe that a detailed understanding of the range of currently available hormonal therapies, including their associated benefits and limitations, is important for supporting the prolongation of survival in patients with advanced prostate cancer. Therefore, this section offers a valuable discussion on the treatment strategies for prostate cancer including CRPC

    Community composition and methane oxidation activity of methanotrophs associated with duckweeds in a fresh water lake

    Get PDF
    Methanotrophs are the only biological sink of the greenhouse gas methane. To understand the ecological features of methanotrophs in association with plants in the methane emitting environments, we investigated the community composition and methane oxidation of methanotrophs associated with duckweeds in a fresh water lake. Duckweeds collected from Lake Biwa, Japan over three summers showed methane consumption activity between 0.0067 and 0.89 μmol h⁻¹ g⁻¹ (wet weight), with the highest values occurring from the end of July to August. The methanotrophic community on duckweeds consisted primarily of γ-proteobacterial groups including the genera Methylomonas and Methylocaldum. Further analysis of co-cultures of a methanotroph isolate with sterilized duckweed revealed that the duckweed plant as well as the duckweed spent culture supernatant exerted an enhancing effect on methane oxidation. These results indicate that duckweeds not only provide a habitat for methanotrophs but also stimulate methanotrophic growth
    corecore