321 research outputs found

    Unmanned Aircraft Systems Integration in the National Airspace System Project - Phase 2 Abstracts - FY2017 to FY2019

    Get PDF
    There is an increasing need to fly Unmanned Aircraft Systems (UAS) in the National Airspace System (NAS) to perform missions of vital importance to national security and defense, emergency management, science, and to enable commercial applications. However, routine access by UAS into the NAS remains unrealized. The UAS community needs routine access to the global airspace for all classes of UAS. Based upon that need, the National Aeronautics and Space Administration (NASA) Aeronautics Research Mission Directorate (ARMD) Integrated Aviation Systems Program (IASP) UAS Integration in the NAS Project identified the following goal: To Provide research findings, utilizing simulation and flight tests, to support the development and validation of Detect and Avoid (DAA) and Command and Control (C2) technologies necessary for integrating UAS into the NAS. Because this is such a broad reaching challenge facing the UAS community, the UAS-NAS Project recognizes the importance of working together with others in Industry and Other Government Agencies to overcome the technical, operational, and public perception barriers

    Technology Development Project Plan Phase 2 Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Integrated Aviation Systems Program (IASP)

    Get PDF
    The technology development Project Plan covers an overview of the Project and planned project activities for FY14-16

    Fundamental and clinical evaluation of "SCC RIABEAD" kit for immuno radiometric assay of squamous cell carcinoma related antigen.

    Get PDF
    Classic vector control strategies target mosquitoes indoors as the main transmitters of malaria are indoor-biting and –resting mosquitoes. However, the intensive use of insecticide-treated bed-nets (ITNs) and indoor residual spraying have put selective pressure on mosquitoes to adapt in order to obtain human blood meals. Thus, early-evening and outdoor vector activity is becoming an increasing concern. This study assessed the effect of a deltamethrin-treated net (100 mg/m2) attached to a one-meter high fence around outdoor cattle enclosures on the number of mosquitoes landing on humans. Mosquitoes were collected from four cattle enclosures: Pen A – with cattle and no net; B – with cattle and protected by an untreated net; C – with cattle and protected by a deltamethrin-treated net; D – no cattle and no net. A total of 3217 culicines and 1017 anophelines were collected, of which 388 were Anopheles gambiae and 629 An. ziemanni. In the absence of cattle nearly 3 times more An. gambiae (p<0.0001) landed on humans. The deltamethrin-treated net significantly reduced (nearly three-fold, p<0.0001) culicine landings inside enclosures. The sporozoite rate of the zoophilic An. ziemanni, known to be a secondary malaria vector, was as high as that of the most competent vector An. gambiae; raising the potential of zoophilic species as secondary malaria vectors. After deployment of the ITNs a deltamethrin persistence of 9 months was observed despite exposure to African weather conditions. The outdoor use of ITNs resulted in a significant reduction of host-seeking culicines inside enclosures. Further studies investigating the effectiveness and spatial repellence of ITNs around other outdoor sites, such as bars and cooking areas, as well as their direct effect on vector-borne disease transmission are needed to evaluate its potential as an appropriate outdoor vector control tool for rural Africa

    Space Based Range Demonstration and Certification (SBRDC)

    Get PDF
    This viewgraph presentation describes the development, utilization and testing of technologies for range safety and range user systems. The contents include: 1) Space Based Range (SBR) Goals and Objectives; 2) Today s United States Range; 3) Future Range; 4) Another Vision for the Future Range; 5) STARS Project Goals; 6) STARS Content; 7) STARS Configuration Flight Demonstrations 1 & 2; 8) Spaceport And Range Technologies STARS Objectives and Results; 9) Spaceport And Range Technologies STARS FD2 Objectives; 10) Range Safety Hardware; 11) Range User Hardware; and 12) Past/Future Flight Demo Plan

    The X-33 Extended Flight Test Range

    Get PDF
    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range

    Technology Development Project Plan Phase 2: Unmanned Aircraft Systems (UAS) Integration in the National Airspace System (NAS) Integrated Aviation Systems Program (IASP)

    Get PDF
    This Phase 2 Project Plan includes the overview and detailed information regarding the areas of Command and Control, Detect and Integrated Test and Evaluation

    Western Aeronautical Test Range

    Get PDF
    NASA's Western Aeronautical Test Range (WATR) is a network of facilities used to support aeronautical research, science missions, exploration system concepts, and space operations. The WATR resides at NASA's Dryden Flight Research Center located at Edwards Air Force Base, California. The WATR is a part of NASA's Corporate Management of Aeronautical Facilities and funded by the Strategic Capability Asset Program (SCAP). It is managed by the Aeronautics Test Program (ATP) of the Aeronautics Research Mission Directorate (ARMD) to provide the right facility at the right time. NASA is a tenant on Edwards Air Force Base and has an agreement with the Air Force Flight Test Center to use the land and airspace controlled by the Department of Defense (DoD). The topics include: 1) The WATR supports a variety of vehicles; 2) Dryden shares airspace with the AFFTC; 3) Restricted airspace, corridors, and special use areas are available for experimental aircraft; 4) WATR Products and Services; 5) WATR Support Configuration; 6) Telemetry Tracking; 7) Time Space Positioning; 8) Video; 9) Voice Communication; 10) Mobile Operations Facilities; 11) Data Processing; 12) Mission Control Center; 13) Real-Time Data Analysis; and 14) Range Safety
    • …
    corecore