28 research outputs found
Forestogram: Biclustering Visualization Framework with Applications in Public Transport and Bioinformatics
RÉSUMÉ : Dans de nombreux problèmes d’analyse de données, les données sont exprimées dans une matrice avec les sujets en ligne et les attributs en colonne. Les méthodes de segmentations traditionnelles visent à regrouper les sujets (lignes), selon des critères de similitude entre ces
sujets. Le but est de constituer des groupes de sujets (lignes) qui partagent un certain degré de ressemblance. Les groupes obtenus permettent de garantir que les sujets partagent des similitudes dans leurs attributs (colonnes), il n’y a cependant aucune garantie sur ce qui se passe au niveau des attributs (les colonnes). Dans certaines applications, un regroupement simultané des lignes et des colonnes appelé biclustering de la matrice de données peut être souhaité. Pour cela, nous concevons et développons un nouveau cadre appelé Forestogram, qui permet le calcul de ce regroupement simultané des lignes et des colonnes (biclusters)dans un mode hiérarchique. Le regroupement simultané des lignes et des colonnes de manière
hiérarchique peut aider les praticiens à mieux comprendre comment les groupes évoluent avec des propriétés théoriques intéressantes. Forestogram, le nouvel outil de calcul et de
visualisation proposé, pourrait être considéré comme une extension 3D du dendrogramme, avec une fusion orthogonale étendue. Chaque bicluster est constitué d’un groupe de lignes (ou de sujets) qui déplie un schéma fortement corrélé avec le groupe de colonnes (ou attributs)
correspondantes. Cependant, au lieu d’effectuer un clustering bidirectionnel indépendamment de chaque côté, nous proposons un algorithme de biclustering hiérarchique qui prend les lignes et les colonnes en même temps pour déterminer les biclusters. De plus, nous développons un
critère d’information basé sur un modèle qui fournit un nombre estimé de biclusters à travers un ensemble de configurations hiérarchiques au sein du forestogramme sous des hypothèses légères. Nous étudions le cadre suggéré dans deux perspectives appliquées différentes, l’une dans le domaine du transport en commun, l’autre dans le domaine de la bioinformatique. En premier lieu, nous étudions le comportement des usagers dans le transport en commun
à partir de deux informations distinctes, les données temporelles et les coordonnées spatiales recueillies à partir des données de transaction de la carte à puce des usagers. Dans de nombreuses villes, les sociétés de transport en commun du monde entier utilisent un système de
carte à puce pour gérer la perception des tarifs. L’analyse de cette information fournit un aperçu complet de l’influence de l’utilisateur dans le réseau de transport en commun interactif. À cet égard, l’analyse des données temporelles, décrivant l’heure d’entrée dans le réseau
de transport en commun est considérée comme la composante la plus importante des données recueillies à partir des cartes à puce. Les techniques classiques de segmentation, basées sur la distance, ne sont pas appropriées pour analyser les données temporelles. Une nouvelle projection intuitive est suggérée pour conserver le modèle de données horodatées. Ceci est introduit dans la méthode suggérée pour découvrir le modèle temporel comportemental des
utilisateurs. Cette projection conserve la distance temporelle entre toute paire arbitraire de données horodatées avec une visualisation significative. Par conséquent, cette information est introduite dans un algorithme de classification hiérarchique en tant que méthode de segmentation de données pour découvrir le modèle des utilisateurs. Ensuite, l’heure d’utilisation est prise en compte comme une variable latente pour rendre la métrique euclidienne appropriée dans l’extraction du motif spatial à travers notre forestogramme. Comme deuxième application, le forestogramme est testé sur un ensemble de données multiomiques combinées à partir de différentes mesures biologiques pour étudier comment l’état de santé des patientes et les modalités biologiques correspondantes évoluent hiérarchiquement au cours du terme de la grossesse, dans chaque bicluster. Le maintien de la grossesse repose sur un équilibre finement équilibré entre la tolérance à l’allogreffe foetale et la protection
mécanismes contre les agents pathogènes envahissants. Malgré l’impact bien établi du développement pendant les premiers mois de la grossesse sur les résultats à long terme, les interactions entre les divers mécanismes biologiques qui régissent la progression de la grossesse
n’ont pas été étudiées en détail. Démontrer la chronologie de ces adaptations à la grossesse à terme fournit le cadre pour de futures études examinant les déviations impliquées dans les pathologies liées à la grossesse, y compris la naissance prématurée et la prééclampsie. Nous effectuons une analyse multi-physique de 51 échantillons de 17 femmes enceintes, livrant à terme. Les ensembles de données comprennent des mesures de l’immunome, du transcriptome,
du microbiome, du protéome et du métabolome d’échantillons obtenus simultanément chez les mêmes patients. La modélisation prédictive multivariée utilisant l’algorithme Elastic Net est utilisée pour mesurer la capacité de chaque ensemble de données à prédire l’âge gestationnel. En utilisant la généralisation empilée, ces ensembles de données sont combinés en un seul modèle. Ce modèle augmente non seulement significativement le pouvoir prédictif
en combinant tous les ensembles de données, mais révèle également de nouvelles interactions entre différentes modalités biologiques. En outre, notre forestogramme suggéré est une autre ligne directrice avec l’âge gestationnel au moment de l’échantillonnage qui fournit un modèle non supervisé pour montrer combien d’informations supervisées sont nécessaires pour chaque trimestre pour caractériser les changements induits par la grossesse dans Microbiome, Transcriptome, Génome, Exposome et Immunome réponses efficacement.----------ABSTRACT : In many statistical modeling problems data are expressed in a matrix with subjects in row and attributes in column. In this regard, simultaneous grouping of rows and columns known
as biclustering of the data matrix is desired. We design and develop a new framework called Forestogram, with the aim of fast computational and hierarchical illustration of biclusters. Often in practical data analysis, we deal with a two-dimensional object known as the data matrix, where observations are expressed as samples (or subjects) in rows, and attributes (or features) in columns. Thus, simultaneous grouping of rows and columns in a hierarchical
manner helps practitioners better understanding how clusters evolve. Forestogram, a novel computational and visualization tool, could be thought of as a 3D expansion of dendrogram, with extended orthogonal merge. Each bicluster consists of group of rows (or samples) that
unfolds a highly-correlated schema with their corresponding group of columns (or attributes). However, instead of performing two-way clustering independently on each side, we propose a hierarchical biclustering algorithm which takes rows and columns at the same time to determine the biclusters. Furthermore, we develop a model-based information criterion which provides an estimated number of biclusters through a set of hierarchical configurations within the forestogram under mild assumptions. We study the suggested framework in two different applied perspectives, one in public transit domain, another one in bioinformatics field. First, we investigate the users’ behavior in public transit based on two distinct information, temporal data and spatial coordinates gathered from smart card. In many cities, worldwide public transit companies use smart card system to manage fare collection. Analysis of this information provides a comprehensive insight of user’s influence in the interactive public transit network. In this regard, analysis of temporal data, describing the time of entering to the public transit network is considered as the most substantial component of the data gathered from the smart cards. Classical distance-based techniques are not always suitable to analyze this time series data. A novel projection with intuitive visual map from higher
dimension into a three-dimensional clock-like space is suggested to reveal the underlying temporal pattern of public transit users. This projection retains the temporal distance between any arbitrary pair of time-stamped data with meaningful visualization. Consequently, this information is fed into a hierarchical clustering algorithm as a method of data segmentation to discover the pattern of users. Then, the time of the usage is taken as a latent variable into account to make the Euclidean metric appropriate for extracting the spatial pattern through
our forestogram. As a second application, forestogram is tested on a multiomics dataset combined from different biological measurements to study how patients and corresponding biological modalities evolve hierarchically in each bicluster over the term of pregnancy. The maintenance of pregnancy relies on a finely-tuned balance between tolerance to the fetal allograft and protective
mechanisms against invading pathogens. Despite the well-established impact of development during the early months of pregnancy on long-term outcomes, the interactions between various biological mechanisms that govern the progression of pregnancy have not been studied in details. Demonstrating the chronology of these adaptations to term pregnancy provides the framework for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. We perform a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets include measurements from the immunome, transcriptome, microbiome, proteome, and metabolome of samples obtained
simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net algorithm is used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets are combined into a single model. This model
not only significantly increases the predictive power by combining all datasets, but also reveals novel interactions between different biological modalities. Furthermore, our suggested forestogram is another guideline along with the gestational age at time of sampling that provides an unsupervised model to show how much supervised information is necessary for each trimester to characterize the pregnancy-induced changes in Microbiome, Transcriptome,
Genome, Exposome, and Immunome responses effectively
Amplifying Pathological Detection in EEG Signaling Pathways through Cross-Dataset Transfer Learning
Pathology diagnosis based on EEG signals and decoding brain activity holds
immense importance in understanding neurological disorders. With the
advancement of artificial intelligence methods and machine learning techniques,
the potential for accurate data-driven diagnoses and effective treatments has
grown significantly. However, applying machine learning algorithms to
real-world datasets presents diverse challenges at multiple levels. The
scarcity of labelled data, especially in low regime scenarios with limited
availability of real patient cohorts due to high costs of recruitment,
underscores the vital deployment of scaling and transfer learning techniques.
In this study, we explore a real-world pathology classification task to
highlight the effectiveness of data and model scaling and cross-dataset
knowledge transfer. As such, we observe varying performance improvements
through data scaling, indicating the need for careful evaluation and labelling.
Additionally, we identify the challenges of possible negative transfer and
emphasize the significance of some key components to overcome distribution
shifts and potential spurious correlations and achieve positive transfer. We
see improvement in the performance of the target model on the target (NMT)
datasets by using the knowledge from the source dataset (TUAB) when a low
amount of labelled data was available. Our findings indicate a small and
generic model (e.g. ShallowNet) performs well on a single dataset, however, a
larger model (e.g. TCN) performs better on transfer and learning from a larger
and diverse dataset
Recommended from our members
Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy.
MotivationMultiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia.ResultsWe performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified.Availability and implementationDatasets and scripts for reproduction of results are available through: https://nalab.stanford.edu/multiomics-pregnancy/.Supplementary informationSupplementary data are available at Bioinformatics online
Systemic Immunologic Consequences of Chronic Periodontitis
Chronic periodontitis (ChP) is a prevalent inflammatory disease affecting 46% of the US population. ChP produces a profound local inflammatory response to dysbiotic oral microbiota that leads to destruction of alveolar bone and tooth loss. ChP is also associated with systemic illnesses, including cardiovascular diseases, malignancies, and adverse pregnancy outcomes. However, the mechanisms underlying these adverse health outcomes are poorly understood. In this prospective cohort study, we used a highly multiplex mass cytometry immunoassay to perform an in-depth analysis of the systemic consequences of ChP in patients before (n = 28) and after (n = 16) periodontal treatment. A high-dimensional analysis of intracellular signaling networks revealed immune system–wide dysfunctions differentiating patients with ChP from healthy controls. Notably, we observed exaggerated proinflammatory responses to Porphyromonas gingivalis–derived lipopolysaccharide in circulating neutrophils and monocytes from patients with ChP. Simultaneously, natural killer cell responses to inflammatory cytokines were attenuated. Importantly, the immune alterations associated with ChP were no longer detectable 3 wk after periodontal treatment. Our findings demarcate systemic and cell-specific immune dysfunctions in patients with ChP, which can be temporarily reversed by the local treatment of ChP. Future studies in larger cohorts are needed to test the boundaries of generalizability of our results
Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy
Motivation Multiple biological clocks govern a healthy pregnancy. These biological mechanisms produce immunologic, metabolomic, proteomic, genomic and microbiomic adaptations during the course of pregnancy. Modeling the chronology of these adaptations during full-term pregnancy provides the frameworks for future studies examining deviations implicated in pregnancy-related pathologies including preterm birth and preeclampsia. Results We performed a multiomics analysis of 51 samples from 17 pregnant women, delivering at term. The datasets included measurements from the immunome, transcriptome, microbiome, proteome and metabolome of samples obtained simultaneously from the same patients. Multivariate predictive modeling using the Elastic Net (EN) algorithm was used to measure the ability of each dataset to predict gestational age. Using stacked generalization, these datasets were combined into a single model. This model not only significantly increased predictive power by combining all datasets, but also revealed novel interactions between different biological modalities. Future work includes expansion of the cohort to preterm-enriched populations and in vivo analysis of immune-modulating interventions based on the mechanisms identified. Availability and implementation Datasets and scripts for reproduction of results are available through: Https://nalab.stanford.edu/multiomics-pregnancy/
Integrated trajectories of the maternal metabolome, proteome, and immunome predict labor onset
Estimating the time of delivery is of high clinical importance because pre- and postterm deviations are associated with complications for the mother and her offspring. However, current estimations are inaccurate. As pregnancy progresses toward labor, major transitions occur in fetomaternal immune, metabolic, and endocrine systems that culminate in birth. The comprehensive characterization of maternal biology that precedes labor is key to understanding these physiological transitions and identifying predictive biomarkers of delivery. Here, a longitudinal study was conducted in 63 women who went into labor spontaneously. More than 7000 plasma analytes and peripheral immune cell responses were analyzed using untargeted mass spectrometry, aptamer-based proteomic technology, and single-cell mass cytometry in serial blood samples collected during the last 100 days of pregnancy. The high-dimensional dataset was integrated into a multiomic model that predicted the time to spontaneous labor [R = 0.85, 95% confidence interval (CI) [0.79 to 0.89], P = 1.2 × 10−40, N = 53, training set; R = 0.81, 95% CI [0.61 to 0.91], P = 3.9 × 10−7, N = 10, independent test set]. Coordinated alterations in maternal metabolome, proteome, and immunome marked a molecular shift from pregnancy maintenance to prelabor biology 2 to 4 weeks before delivery. A surge in steroid hormone metabolites and interleukin-1 receptor type 4 that preceded labor coincided with a switch from immune activation to regulation of inflammatory responses. Our study lays the groundwork for developing blood-based methods for predicting the day of labor, anchored in mechanisms shared in preterm and term pregnancies
Multiomics Longitudinal Modeling of Preeclamptic Pregnancies
Preeclampsia is a complex disease of pregnancy whose physiopathology remains unclear and that poses a threat to both mothers and infants. Specific complex changes in women\u27s physiology precede a diagnosis of preeclampsia. Understanding multiple aspects of such a complex changes at different levels of biology, can be enabled by simultaneous application of multiple assays. We developed prediction models for preeclampsia risk by analyzing six omics datasets from a longitudinal cohort of pregnant women. A machine learning-based multiomics model had high accuracy (area under the receiver operating characteristics curve (AUC) of 0.94, 95% confidence intervals (CI):[0.90, 0.99]). A prediction model using only ten urine metabolites provided an accuracy of the whole metabolomic dataset and was validated using an independent cohort of 16 women (AUC= 0.87, 95% CI:[0.76, 0.99]). Integration with clinical variables further improved prediction accuracy of the urine metabolome model (AUC= 0.90, 95% CI:[0.80, 0.99], urine metabolome, validated). We identified several biological pathways to be associated with preeclampsia. The findings derived from models were integrated with immune system cytometry data, confirming known physiological alterations associated with preeclampsia and suggesting novel associations between the immune and proteomic dynamics. While further validation in larger populations is necessary, these encouraging results will serve as a basis for a simple, early diagnostic test for preeclampsia
Multiomics Characterization of Preterm Birth in Low- and Middle-Income Countries.
Importance: Worldwide, preterm birth (PTB) is the single largest cause of deaths in the perinatal and neonatal period and is associated with increased morbidity in young children. The cause of PTB is multifactorial, and the development of generalizable biological models may enable early detection and guide therapeutic studies.
Objective: To investigate the ability of transcriptomics and proteomics profiling of plasma and metabolomics analysis of urine to identify early biological measurements associated with PTB.
Design, Setting, and Participants: This diagnostic/prognostic study analyzed plasma and urine samples collected from May 2014 to June 2017 from pregnant women in 5 biorepository cohorts in low- and middle-income countries (LMICs; ie, Matlab, Bangladesh; Lusaka, Zambia; Sylhet, Bangladesh; Karachi, Pakistan; and Pemba, Tanzania). These cohorts were established to study maternal and fetal outcomes and were supported by the Alliance for Maternal and Newborn Health Improvement and the Global Alliance to Prevent Prematurity and Stillbirth biorepositories. Data were analyzed from December 2018 to July 2019.
Exposures: Blood and urine specimens that were collected early during pregnancy (median sampling time of 13.6 weeks of gestation, according to ultrasonography) were processed, stored, and shipped to the laboratories under uniform protocols. Plasma samples were assayed for targeted measurement of proteins and untargeted cell-free ribonucleic acid profiling; urine samples were assayed for metabolites.
Main Outcomes and Measures: The PTB phenotype was defined as the delivery of a live infant before completing 37 weeks of gestation.
Results: Of the 81 pregnant women included in this study, 39 had PTBs (48.1%) and 42 had term pregnancies (51.9%) (mean [SD] age of 24.8 [5.3] years). Univariate analysis demonstrated functional biological differences across the 5 cohorts. A cohort-adjusted machine learning algorithm was applied to each biological data set, and then a higher-level machine learning modeling combined the results into a final integrative model. The integrated model was more accurate, with an area under the receiver operating characteristic curve (AUROC) of 0.83 (95% CI, 0.72-0.91) compared with the models derived for each independent biological modality (transcriptomics AUROC, 0.73 [95% CI, 0.61-0.83]; metabolomics AUROC, 0.59 [95% CI, 0.47-0.72]; and proteomics AUROC, 0.75 [95% CI, 0.64-0.85]). Primary features associated with PTB included an inflammatory module as well as a metabolomic module measured in urine associated with the glutamine and glutamate metabolism and valine, leucine, and isoleucine biosynthesis pathways.
Conclusions and Relevance: This study found that, in LMICs and high PTB settings, major biological adaptations during term pregnancy follow a generalizable model and the predictive accuracy for PTB was augmented by combining various omics data sets, suggesting that PTB is a condition that manifests within multiple biological systems. These data sets, with machine learning partnerships, may be a key step in developing valuable predictive tests and intervention candidates for preventing PTB