169 research outputs found

    Mesoflowers: a new class of highly efficient surface-enhanced Raman active and infrared-absorbing materials

    Get PDF
    A method for the synthesis of a new class of anisotropic mesostructured gold material, which we call "mesoflowers", is demonstrated. The mesoflowers, unsymmetrical at the single particle level, resemble several natural objects and are made up of a large number of stems with unusual pentagonal symmetry. The mesostructured material has a high degree of structural purity with star-shaped, nano-structured stems. The mesoflowers were obtained in high yield, without any contaminating structures and their size could be tuned from nano- to meso-dimensions. The dependence of various properties of the mesoflowers on their conditions of formation was studied. The near-infrared-infrared (NIR-IR) absorption exhibited by the mesoflowers has been used for the development of infrared filters. Using a prototypical device, we demonstrated the utility of the gold mesoflowers in reducing the temperature rise in an enclosure exposed to daylight in peak summer. These structures showed a high degree of surface-enhanced Raman scattering (SERS) activity compared to spherical analogues. SERS-based imaging of a single mesoflower is demonstrated. The high SERS activity and NIR-IR absorption property open up a number of exciting applications in diverse areas

    Electric-field-assisted growth of highly uniform and oriented gold nanotriangles on conducting glass substrates

    Get PDF
    A method for the growth of highly aligned gold nanotriangles (NTs) on conducting glass surfaces is described. This may be described as 'potential-assisted seed mediated growth'. Atomic force microscopy confirms that all the triangles observed are equilateral and are uniformly stacked. The NT-coated glass exhibits intense near-infrared absorption and strong surface-enhanced Raman activity

    Molecular precursor-mediated tuning of gold mesostructures: synthesis and SERRS studies

    Get PDF
    This article describes the high yield synthesis of a range of anisotropic gold mesostructures such as flowers, cubes, plates, and quasispherical mesostructures using a seed-mediated approach. These structures were formed from precursor seed nanoparticles of gold stabilized by the template, 1,2-phenylenediamine (1,2-PDA). We demonstrated that control of the morphologies from mesoflowers to quasispherical structures is possible with the molecular precursors used in the synthesis of seeds. It was found that concentration of the template, 1,2-PDA added during seed preparation played an important role in the conversion of mesoflowers to quasispherical and cube-like structures. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and energy dispersive analysis of X-rays (EDAX) were used for the determination of physical and chemical composition of the nano/mesostructures formed. The seed nanoparticles responsible for the formation of these various anisotropic structures were further characterized and analyzed using laser desorption ionization mass spectrometry (LDI MS) and TEM. We demonstrated high surface-enhanced resonance Raman scattering (SERRS) activity of the mesoflowers using crystal violet (CV) as the analyte molecule. The shape-dependent SERRS activity of various meso/nanostructures was also studied. A ~0.8×102 decrease in the SERRS intensity was observed in quasispherical structures compared to mesoflowers. The increased SERRS activity is attributed to the unique shape and nanofeatures present on the mesoflowers, which were absent in the quasispherical mesostructures. We believe that the high SERRS activity exhibited by the mesoflowers may be utilized for developing novel sensors

    A fifteen atom silver cluster confined in bovine serum albumin

    Get PDF
    Luminescent Ag15 clusters confined in bovine serum albumin (BSA) have been prepared by a simple wet chemical route. The luminescence, exhibiting a maximum at 685 nm, is observable to the naked eye. The chemical composition of these clusters was analyzed using matrix assisted laser desorption ionization mass spectrometry (MALDI MS), X-ray photoelectron spectroscopy (XPS), and energy dispersive analysis of X-rays (EDAX). Intact Ag15@BSA is observed by MALDI MS. Multiple charge states of the cluster are observed confirming the mass assignment. The clusters showed a quantum yield of 10.71% in water and the luminescence was stable in a pH range of 1-12. Stability of the clusters was enhanced by the addition of polyvinylpyrrolidone (PVP). The clusters showed luminescence in the solid state as well. Evolution of clusters with variation in the amount of reducing agent added shows that the cluster formation goes through an intermediate state of bound silver, formed instantaneously after the addition of Ag+, which transforms to the cluster. High yield synthesis and exciting photophysical properties make our new material interesting for various applications such as biolabeling and imaging

    Electric field enhancement and concomitant Raman spectral effects at the edges of a nanometre-thin gold mesotriangle

    Get PDF
    The local electric field enhancement at various regions of an individual nanometre-thin gold mesotriangle has been demonstrated both numerically and experimentally. This work provides, for the first time, direct experimental evidence of localized enhancement of Raman signals at three edges of nanometre-thin gold mesotriangles at single particle level, using Raman microscopy. Raman images were collected from mesotriangles of ~11 mm edge length and ~30 nm thickness, using adsorbed crystal violet as the probe molecule. Spatial distribution and the extent of electric field enhancement around a single mesotriangle are investigated theoretically by finite-difference time-domain (FDTD) simulations. Confocal Raman studies provided direct proof for the substantial electrical field enhancement at the edges and corners compared to the face of the mesotriangle. The simulated electric field enhancement was in the order, corner > edge > surface, which is in complete agreement with the experimental results

    Synthesis and Assembly of Gold and Iron Oxide Particles Within an Emulsion Droplet; Facile Production of Core@Shell Particles

    Get PDF
    This is an Open Access Article. It is published by Elsevier under the Creative Commons Attribution NonCommercial-No Derivatives 4.0 Unported Licence (CC BY-NC-ND). Full details of this licence are available at: http://creativecommons.org/licenses/by-nc-nd/4.0/Here we report a method for synthesising and assembling nanomaterials at the liquid-liquid interface of an emulsion droplet, resulting in a simple strategy for producing hollow Au shells, or Fe3O4@Au core@shell particles. Mercaptododecanoic acid stabilised Au nanoparticles were added to the aqueous continuous phase, in order to stabilise hexane emulsion droplets formed within a microfluidic chip. The diameters of Au Pickering emulsions could be controlled by varying the flowrates, this produce hollowparticles. The addition of a second nanoparticle, Fe3O4 (average diameter of 12 nm), into the organic phase produced core@shell particles. The diameter of the resultant material was determined by the concentration of the Fe3O4. This report is the first to demonstrate Pickering emulsions within a microfluidics chip for the production of Fe3O4@Au particles, and it is believed that this could be a versatile platform for the large scale production of core@shell particles

    Biofabrication of Anisotropic Gold Nanotriangles Using Extract of Endophytic Aspergillus clavatus as a Dual Functional Reductant and Stabilizer

    Get PDF
    Biosynthesis of metal and semiconductor nanoparticles using microorganisms has emerged as a more eco-friendly, simpler and reproducible alternative to the chemical synthesis, allowing the generation of rare forms such as nanotriangles and prisms. Here, we report the endophytic fungus Aspergillus clavatus, isolated from surface sterilized stem tissues of Azadirachta indica A. Juss., when incubated with an aqueous solution of chloroaurate ions produces a diverse mixture of intracellular gold nanoparticles (AuNPs), especially nanotriangles (GNT) in the size range from 20 to 35 nm. These structures (GNT) are of special interest since they possess distinct plasmonic features in the visible and IR regions, which equipped them with unique physical and optical properties exploitable in vital applications such as optics, electronics, catalysis and biomedicine. The reaction process was simple and convenient to handle and was monitored using ultraviolet–visible spectroscopy (UV–vis). The morphology and crystalline nature of the GNTs were determined from transmission electron microscopy (TEM), atomic force spectroscopy (AFM) and X-ray diffraction (XRD) spectroscopy. This proposed mechanistic principal might serve as a set of design rule for the synthesis of anisotropic nanostructures with desired architecture and can be amenable for the large scale commercial production and technical applications

    Anisotropic nanomaterials: structure, growth, assembly, and functions

    Get PDF
    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications
    corecore