54 research outputs found

    Resolution of the curse of dimensionality in single-cell RNA sequencing data analysis

    Get PDF
    1細胞データ解析の精度が飛躍的に向上する前処理法の開発. 京都大学プレスリリース. 2022-08-09.Clearing the mist hiding the genome. 京都大学プレスリリース. 2022-08-09.Single-cell RNA sequencing (scRNA-seq) can determine gene expression in numerous individual cells simultaneously, promoting progress in the biomedical sciences. However, scRNA-seq data are high-dimensional with substantial technical noise, including dropouts. During analysis of scRNA-seq data, such noise engenders a statistical problem known as the curse of dimensionality (COD). Based on high-dimensional statistics, we herein formulate a noise reduction method, RECODE (resolution of the curse of dimensionality), for high-dimensional data with random sampling noise. We show that RECODE consistently resolves COD in relevant scRNA-seq data with unique molecular identifiers. RECODE does not involve dimension reduction and recovers expression values for all genes, including lowly expressed genes, realizing precise delineation of cell fate transitions and identification of rare cells with all gene information. Compared with representative imputation methods, RECODE employs different principles and exhibits superior overall performance in cell-clustering, expression value recovery, and single-cell–level analysis. The RECODE algorithm is parameter-free, data-driven, deterministic, and high-speed, and its applicability can be predicted based on the variance normalization performance. We propose RECODE as a powerful strategy for preprocessing noisy high-dimensional data

    GATA transcription factors, SOX17 and TFAP2C, drive the human germ-cell specification program

    Get PDF
    ヒト生殖細胞の運命決定機序を解明 --転写因子のみによる生殖細胞の誘導. 京都大学プレスリリース. 2021-03-01.Master regulator for human germ cell specification. 京都大学プレスリリース. 2021-03-01.The in vitro reconstitution of human germ-cell development provides a robust framework for clarifying key underlying mechanisms. Here, we explored transcription factors (TFs) that engender the germ-cell fate in their pluripotent precursors. Unexpectedly, SOX17, TFAP2C, and BLIMP1, which act under the BMP signaling and are indispensable for human primordial germ-cell-like cell (hPGCLC) specification, failed to induce hPGCLCs. In contrast, GATA3 or GATA2, immediate BMP effectors, combined with SOX17 and TFAP2C, generated hPGCLCs. GATA3/GATA2 knockouts dose-dependently impaired BMP-induced hPGCLC specification, whereas GATA3/GATA2 expression remained unaffected in SOX17, TFAP2C, or BLIMP1 knockouts. In cynomolgus monkeys, a key model for human development, GATA3, SOX17, and TFAP2C were co-expressed exclusively in early PGCs. Crucially, the TF-induced hPGCLCs acquired a hallmark of bona fide hPGCs to undergo epigenetic reprogramming and mature into oogonia/gonocytes in xenogeneic reconstituted ovaries. By uncovering a TF circuitry driving the germ line program, our study provides a paradigm for TF-based human gametogenesis

    Quantitative Dynamics of Chromatin Remodeling during Germ Cell Specification from Mouse Embryonic Stem Cells

    Get PDF
    SummaryGerm cell specification is accompanied by epigenetic remodeling, the scale and specificity of which are unclear. Here, we quantitatively delineate chromatin dynamics during induction of mouse embryonic stem cells (ESCs) to epiblast-like cells (EpiLCs) and from there into primordial germ cell-like cells (PGCLCs), revealing large-scale reorganization of chromatin signatures including H3K27me3 and H3K9me2 patterns. EpiLCs contain abundant bivalent gene promoters characterized by low H3K27me3, indicating a state primed for differentiation. PGCLCs initially lose H3K4me3 from many bivalent genes but subsequently regain this mark with concomitant upregulation of H3K27me3, particularly at developmental regulatory genes. PGCLCs progressively lose H3K9me2, including at lamina-associated perinuclear heterochromatin, resulting in changes in nuclear architecture. T recruits H3K27ac to activate BLIMP1 and early mesodermal programs during PGCLC specification, which is followed by BLIMP1-mediated repression of a broad range of targets, possibly through recruitment and spreading of H3K27me3. These findings provide a foundation for reconstructing regulatory networks of the germline epigenome

    SC3-seq: A method for highly parallel and quantitative measurement of single-cell gene expression

    Get PDF
    Single-cell mRNA sequencing (RNA-seq) methods have undergone rapid development in recent years, and transcriptome analysis of relevant cell populations at single-cell resolution has become a key research area of biomedical sciences. We here present single-cell mRNA 3-prime end sequencing (SC3-seq), a practical methodology based on PCR amplification followed by 3-prime-end enrichment for highly quantitative, parallel and cost-effective measurement of gene expression in single cells. The SC3-seq allows excellent quantitative measurement of mRNAs ranging from the 10, 000-cell to 1-cell level, and accordingly, allows an accurate estimate of the transcript levels by a regression of the read counts of spike-in RNAs with defined copy numbers. The SC3-seq has clear advantages over other typical single-cell RNA-seq methodologies for the quantitative measurement of transcript levels and at a sequence depth required for the saturation of transcript detection. The SC3-seq distinguishes four distinct cell types in the peri-implantation mouse blastocysts. Furthermore, the SC3-seq reveals the heterogeneity in human-induced pluripotent stem cells (hiPSCs) cultured under on-feeder as well as feeder-free conditions, demonstrating a more homogeneous property of the feeder-free hiPSCs. We propose that SC3-seq might be used as a powerful strategy for single-cell transcriptome analysis in a broad range of investigations in biomedical sciences

    Discrimination of Stem Cell Status after Subjecting Cynomolgus Monkey Pluripotent Stem Cells to Naïve Conversion

    Get PDF
    Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics

    Generation of transgenic cynomolgus monkeys that express green fluorescent protein throughout the whole body.

    Get PDF
    Nonhuman primates are valuable for human disease modelling, because rodents poorly recapitulate some human diseases such as Parkinson\u27s disease and Alzheimer\u27s disease amongst others. Here, we report for the first time, the generation of green fluorescent protein (GFP) transgenic cynomolgus monkeys by lentivirus infection. Our data show that the use of a human cytomegalovirus immediate-early enhancer and chicken beta actin promoter (CAG) directed the ubiquitous expression of the transgene in cynomolgus monkeys. We also found that injection into mature oocytes before fertilization achieved homogenous expression of GFP in each tissue, including the amnion, and fibroblasts, whereas injection into fertilized oocytes generated a transgenic cynomolgus monkey with mosaic GFP expression. Thus, the injection timing was important to create transgenic cynomolgus monkeys that expressed GFP homogenously in each of the various tissues. The strategy established in this work will be useful for the generation of transgenic cynomolgus monkeys for transplantation studies as well as biomedical research
    corecore