121 research outputs found

    Representations of Inverse Functions by the Integral Transform with the Sign Kernel

    Get PDF
    Mathematics Subject Classification: Primary 30C40In this paper we give practical and numerical representations of inverse functions by using the integral transform with the sign kernel, and show corresponding numerical experiments by using computers. We derive a very simple formula from a general idea for the representation of the inverse functions, based on the theory of reproducing kernels

    The systematic investigations of high-pressure polymorphs in shocked L type ordinary chondrites

    Get PDF
    第6回極域科学シンポジウム[OA] 南極隕石11月16日(月) 国立国語研究所 2階 講

    Reduced spinal microglial activation and neuropathic pain after nerve injury in mice lacking all three nitric oxide synthases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several studies have investigated the involvement of nitric oxide (NO) in acute and chronic pain using mice lacking a single NO synthase (NOS) gene among the three isoforms: neuronal (nNOS), inducible (iNOS) and endothelial (eNOS). However, the precise role of NOS/NO in pain states remains to be determined owing to the substantial compensatory interactions among the NOS isoforms. Therefore, in this study, we used mice lacking all three NOS genes (<it>n/i/eNOS<sup>-/-</sup></it>mice) and investigated the behavioral phenotypes in a series of acute and chronic pain assays.</p> <p>Results</p> <p>In a model of tissue injury-induced pain, evoked by intraplantar injection of formalin, both <it>iNOS<sup>-/-</sup></it>and <it>n/i/eNOS<sup>-/-</sup></it>mice exhibited attenuations of pain behaviors in the second phase compared with that in wild-type mice. In a model of neuropathic pain, nerve injury-induced behavioral and cellular responses (tactile allodynia, spinal microglial activation and Src-family kinase phosphorylation) were reduced in <it>n/i/eNOS<sup>-/-</sup></it>but not <it>iNOS<sup>-/-</sup></it>mice. Tactile allodynia after nerve injury was improved by acute pharmacological inhibition of all NOSs and nNOS. Furthermore, in MG-5 cells (a microglial cell-line), interferon-γ enhanced NOSs and Mac-1 mRNA expression, and the Mac-1 mRNA increase was suppressed by L-NAME co-treatment. Conversely, the NO donor, sodium nitroprusside, markedly increased mRNA expression of Mac-1, interleukin-6, toll-like receptor 4 and P2X4 receptor.</p> <p>Conclusions</p> <p>Our results provide evidence that the NOS/NO pathway contributes to behavioral pain responses evoked by tissue injury and nerve injury. In particular, nNOS may be important for spinal microglial activation and tactile allodynia after nerve injury.</p

    Timing of CRISPR/Cas9-related mRNA microinjection after activation as an important factor affecting genome editing efficiency in porcine oocytes

    Get PDF
    Recently, successful one-step genome editing by microinjection of CRISPR/Cas9-related mRNA components into the porcine zygote has been described. Given the relatively long gestational period and the high cost of housing swine, the establishment of an effective microinjection-based porcine genome editing method is urgently required. Previously, we have attempted to disrupt a gene encoding alpha-1,3-galactosyltransferase (GGTA1), which synthesizes the alpha-Gal epitope, by microinjecting CRISPR/Cas9-related nucleic acids and enhanced green fluorescent protein (EGFP) mRNA into porcine oocytes immediately after electrical activation. We found that genome editing was indeed induced, although the resulting blastocysts were mosaic and the frequency of modified cells appeared to be low (50%). To improve genome editing efficiency in porcine oocytes, cytoplasmic injection was performed 6 h after electrical activation, a stage wherein the pronucleus is formed. The developing blastocysts exhibited higher levels of EGFP. Furthermore, the T7 endonuclease 1 assay and subsequent sequencing demonstrated that these embryos exhibited increased genome editing efficiencies (69%), although a high degree of mosaicism for the induced mutation was still observed. Single blastocyst-based cytochemical staining with fluorescently labeled isolectin BS-I-B-4 also confirmed this mosaicism. Thus, the development of a technique that avoids or reduces such mosaicism would be a key factor for efficient knock out piglet production via microinjection. (C) 2017 Elsevier Inc. All rights reserved.ArticleTHERIOGENOLOGY.108:29-38(2018)journal articl
    corecore