147 research outputs found

    Tunneling of a composite particle: Effects of intrinsic structure

    Full text link
    We consider simple models of tunneling of an object with intrinsic degrees of freedom. This important problem was not extensively studied until now, in spite of numerous applications in various areas of physics and astrophysics. We show possibilities of enhancement for the probability of tunneling due to the presence of intrinsic degrees of freedom split by weak external fields or by polarizability of the slow composite object.Comment: 6 pages, 3 figures, version to be published in Journal of Physics

    Serotonergic Input to Orexin Neurons Plays a Role in Maintaining Wakefulness and REM Sleep Architecture

    Get PDF
    Neurons expressing neuropeptide orexins (hypocretins) in the lateral hypothalamus (LH) and serotonergic neurons in the dorsal raphe nucleus (DR) both play important roles in the regulation of sleep/wakefulness states, and show similar firing patterns across sleep/wakefulness states. Orexin neurons send excitatory projections to serotonergic neurons in the DR, which express both subtypes of orexin receptors (Mieda et al., 2011), while serotonin (5-HT) potently inhibits orexin neurons through activation of 5HT1A receptors (5HT1ARs). In this study, we examined the physiological importance of serotonergic inhibitory regulation of orexin neurons by studying the phenotypes of mice lacking the 5HT1A receptor gene (Htr1a) specifically in orexin neurons (ox5HT1ARKO mice). ox5HT1ARKO mice exhibited longer NREM sleep time along with decreased wakefulness time in the later phase of the dark period. We also found that restraint stress induced a larger impact on REM sleep architecture in ox5HT1ARKO mice than in controls, with a larger delayed increase in REM sleep amount as compared with that in controls, indicating abnormality of REM sleep homeostasis in the mutants. These results suggest that 5HT1ARs in orexin neurons are essential in the regulation of sleep/wakefulness states, and that serotonergic regulation of orexin neurons plays a crucial role in the appropriate control of orexinergic tone to maintain normal sleep/wake architecture

    Effects of a newly developed potent orexin-2 receptor-selective antagonist, compound 1 m, on sleep/wakefulness states in mice

    Get PDF
    Orexins (also known as hypocretins) play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs), orexin 1 (OX1R) and orexin 2 receptors (OX2R). In order to understand the differential contribution of both receptors in regulating sleep/wakefulness states we compared the pharmacological effects of a newly developed OX2R antagonist (2-SORA), Compound 1 m (C1 m), with those of a dual orexin receptor antagonist (DORA), suvorexant, in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant decreased wakefulness time with similar efficacy in a dose-dependent manner. While C1m primarily increased total non-rapid eye movement (NREM) sleep time without affecting episode durations and with minimal effects on REM sleep, suvorexant increased both total NREM and REM sleep time and episode durations with predominant effects on REM sleep. Fos-immunostaining showed that both compounds affected the activities of arousal-related neurons with different patterns. The number of Fos-IR noradrenergic neurons in the locus coeruleus was lower in the suvorexant group as compared with the control and C1m-treated groups. In contrast, the numbers of Fos-IR neurons in histaminergic neurons in the tuberomamillary nucleus and serotonergic neurons in the dorsal raphe were reduced to a similar extent in the suvorexant and C1m groups as compared with the vehicle-treated group. Together, these results suggest that an orexin-mediated suppression of REM sleep via potential activation of OX1Rs in the locus coeruleus may possibly contribute to the differential effects on sleep/wakefulness exerted by a DORA as compared to a 2-SORA. © 2014 Etori, Saito, Tsujino and Sakurai

    Monoamines Inhibit GABAergic Neurons in Ventrolateral Preoptic Area That Make Direct Synaptic Connections to Hypothalamic Arousal Neurons

    Get PDF
    The hypothalamus plays an important role in the regulation of sleep/wakefulness states. While the ventrolateral preoptic nucleus (VLPO) plays a critical role in the initiation and maintenance of sleep, the lateral posterior part of the hypothalamus contains neuronal populations implicated in maintenance of arousal, including orexin-producing neurons (orexin neurons) in the lateral hypothalamic area (LHA) and histaminergic neurons in the tuberomammillary nucleus (TMN). During a search for neurons that make direct synaptic contact with histidine decarboxylase-positive (HDC+), histaminergic neurons (HDC neurons) in the TMN and orexin neurons in the LHA of male mice, we found that these arousal-related neurons are heavily innervated by GABAergic neurons in the preoptic area including the VLPO. We further characterized GABAergic neurons electrophysiologically in the VLPO (GABAVLPO neurons) that make direct synaptic contact with these hypothalamic arousal-related neurons. These neurons (GABAVLPO→HDC or GABAVLPO→orexin neurons) were both potently inhibited by noradrenaline and serotonin, showing typical electrophysiological characteristics of sleep-promoting neurons in the VLPO. This work provides direct evidence of monosynaptic connectivity between GABAVLPO neurons and hypothalamic arousal neurons and identifies the effects of monoamines on these neuronal pathways

    GABAergic neurons in the preoptic area send direct inhibitory projections to orexin neurons

    Get PDF
    Populations of neurons in the hypothalamic preoptic area (POA) fire rapidly during sleep, exhibiting sleep/waking state-dependent firing patterns that are the reciprocal of those observed in the arousal system. The majority of these preoptic "sleep-active" neurons contain the inhibitory neurotransmitter GABA. On the other hand, a population of neurons in the lateral hypothalamic area (LHA) contains orexins, which play an important role in the maintenance of wakefulness, and exhibit an excitatory influence on arousal-related neurons. It is important to know the anatomical and functional interactions between the POA sleep-active neurons and orexin neurons, both of which play important, but opposite roles in regulation of sleep/wakefulness states. In this study, we confirmed that specific pharmacogenetic stimulation of GABAergic neurons in the POA leads to an increase in the amount of non-rapid eye movement (NREM) sleep. We next examined direct connectivity between POA GABAergic neurons and orexin neurons using channelrhodopsin 2 (ChR2) as an anterograde tracer as well as an optogenetic tool. We expressed ChR2-eYFP selectively in GABAergic neurons in the POA by AAV-mediated gene transfer, and examined the projection sites of ChR2-eYFP-expressing axons, and the effect of optogenetic stimulation of ChR2-eYFP on the activity of orexin neurons. We found that these neurons send widespread projections to wakefulness-related areas in the hypothalamus and brain stem, including the LHA where these fibers make close appositions to orexin neurons. Optogenetic stimulation of these fibers resulted in rapid inhibition of orexin neurons. These observations suggest direct connectivity between POA GABAergic neurons and orexin neurons. © 2013 Saito, Tsujino, Hasegawa, Akashi, Abe, Mieda, Sakimura and Sakurai

    Honeycomb-Layered Oxides With Silver Atom Bilayers and Emergence of Non-Abelian SU(2) Interactions

    Get PDF
    Honeycomb-layered oxides with monovalent or divalent, monolayered cationic lattices generally exhibit myriad crystalline features encompassing rich electrochemistry, geometries, and disorders, which particularly places them as attractive material candidates for next-generation energy storage applications. Herein, global honeycomb-layered oxide compositions, Ag2M2TeO6 ((Formula presented.).) exhibiting (Formula presented.) atom bilayers with sub-valent states within Ag-rich crystalline domains of Ag6M2TeO6 and (Formula presented.) -deficient domains of (Formula presented.) ((Formula presented.)). The (Formula presented.) -rich material characterized by aberration-corrected transmission electron microscopy reveals local atomic structural disorders characterized by aperiodic stacking and incoherency in the bilayer arrangement of (Formula presented.) atoms. Meanwhile, the global material not only displays high ionic conductivity but also manifests oxygen-hole electrochemistry during silver-ion extraction. Within the (Formula presented.) -rich domains, the bilayered structure, argentophilic interactions therein and the expected (Formula presented.) sub-valent states ((Formula presented.), etc.) are theoretically understood via spontaneous symmetry breaking of SU(2) 7 U(1) gauge symmetry interactions amongst 3 degenerate mass-less chiral fermion states, justified by electron occupancy of silver (Formula presented.) and 5s orbitals on a bifurcated honeycomb lattice. This implies that bilayered frameworks have research applications that go beyond the confines of energy storage

    The globular cluster VVV CL002 falling down to the hazardous Galactic centre

    Get PDF
    © 2024 The Author(s). Published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Context. The Galactic centre is hazardous for stellar clusters because of the strong tidal force in action there. It is believed that many clusters were destroyed there and contributed stars to the crowded stellar field of the bulge and the nuclear stellar cluster. However, the development of a realistic model to predict the long-term evolution of the complex inner Galaxy has proven difficult, and observations of surviving clusters in the central region would provide crucial insights into destruction processes. Aims: Among the known Galactic globular clusters, VVV CL002 is the closest to the centre, at 0.4 kpc, but has a very high transverse velocity of 400 km s−1. The nature of this cluster and its impact on Galactic astronomy need to be addressed with spectroscopic follow up. Methods: Here we report the first measurements of its radial velocity and chemical abundance based on near-infrared high-resolution spectroscopy. Results: We find that this cluster has a counter-rotating orbit constrained within 1.0 kpc of the centre, and as close as 0.2 kpc at the perigalacticon, confirming that the cluster is not a passerby from the halo but a genuine survivor enduring the harsh conditions of the tidal forces of the Galactic mill. In addition, its metallicity and α abundance ([α/Fe] ≃ +0.4 and [Fe/H] = −0.54) are similar to those of some globular clusters in the bulge. Recent studies suggest that stars with such α-enhanced stars were more common at 3-6 kpc from the centre around 10 Gyr ago. Conclusions: We infer that VVV CL002 was formed outside but is currently falling down to the centre, showcasing a real-time event that must have occurred to many clusters a long time ago.Peer reviewe

    Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues

    Get PDF
    Whole-organ/body three-dimensional (3D) staining and imaging have been enduring challenges in histology. By dissecting the complex physicochemical environment of the staining system, we developed a highly optimized 3D staining imaging pipeline based on CUBIC. Based on our precise characterization of biological tissues as an electrolyte gel, we experimentally evaluated broad 3D staining conditions by using an artificial tissue-mimicking material. The combination of optimized conditions allows a bottom-up design of a superior 3D staining protocol that can uniformly label whole adult mouse brains, an adult marmoset brain hemisphere, an ~1 cm3 tissue block of a postmortem adult human cerebellum, and an entire infant marmoset body with dozens of antibodies and cell-impermeant nuclear stains. The whole-organ 3D images collected by light-sheet microscopy are used for computational analyses and whole-organ comparison analysis between species. This pipeline, named CUBIC-HistoVIsion, thus offers advanced opportunities for organ- and organism-scale histological analysis of multicellular systems

    Intermediate-luminosity Type IIP SN 2021gmj: a low-energy explosion with signatures of circumstellar material

    Full text link
    We present photometric, spectroscopic and polarimetric observations of the intermediate-luminosity Type IIP supernova (SN) 2021gmj from 1 to 386 days after the explosion. The peak absolute V-band magnitude of SN 2021gmj is -15.5 mag, which is fainter than that of normal Type IIP SNe. The spectral evolution of SN 2021gmj resembles that of other sub-luminous supernovae: the optical spectra show narrow P-Cygni profiles, indicating a low expansion velocity. We estimate the progenitor mass to be about 12 Msun from the nebular spectrum and the 56Ni mass to be about 0.02 Msun from the bolometric light curve. We also derive the explosion energy to be about 3 x 10^{50} erg by comparing numerical light curve models with the observed light curves. Polarization in the plateau phase is not very large, suggesting nearly spherical outer envelope. The early photometric observations capture the rapid rise of the light curve, which is likely due to the interaction with a circumstellar material (CSM). The broad emission feature formed by highly-ionized lines on top of a blue continuum in the earliest spectrum gives further indication of the CSM at the vicinity of the progenitor. Our work suggests that a relatively low-mass progenitor of an intermediate-luminosity Type IIP SN can also experience an enhanced mass loss just before the explosion, as suggested for normal Type IIP SNe.Comment: 18 pages, 16 figures, resubmitted to MNRAS after addressing referee comment
    • 

    corecore