65 research outputs found

    The Mechanism for Primordial Germ-Cell Migration Is Conserved between Japanese Eel and Zebrafish

    Get PDF
    Primordial germ cells (PGCs) are segregated and specified from somatic cells during early development. These cells arise elsewhere and have to migrate across the embryo to reach developing gonadal precursors. Several molecules associated with PGC migration (i.e. dead-end, nanos1, and cxcr4) are highly conserved across phylum boundaries. However, since cell migration is a complicated process that is regulated spatially and temporally by multiple adaptors and signal effectors, the process is unlikely to be explained by these known genes only. Indeed, it has been shown that there are variations in PGC migration pattern during development among teleost species. However, it is still unclear whether the actual mechanism of PGC migration is conserved among species. In this study, we studied the migration of PGCs in Japanese eel (Anguilla japonica) embryos and tested the migration mechanism between Japanese eel and zebrafish (Danio rerio) for conservation, by transplanting eel PGCs into zebrafish embryos. The experiments showed that eel PGCs can migrate toward the gonadal region of zebrafish embryos along with endogenous PGCs, even though the migration patterns, behaviors, and settlements of PGCs are somewhat different between these species. Our results demonstrate that the migration mechanism of PGCs during embryonic development is highly conserved between these two distantly related species (belonging to different teleost orders)

    Developmental biotechnology for aquaculture, with special reference to surrogate production in teleost fishes

    Get PDF
    This review introduces surrogate production as a new technique for fish-seed production in aquaculture. Surrogate production in fish is a technique used to obtain the gametes of a certain genotype through the gonad of another genotype. It is achieved by inducing germ-line chimerism between different species during early development. Primordial germ cells (PGCs) are the key material of this technique to induce germ-line chimera. In several species, it has been reported that PGCs differentiated from the blastomeres inherited some maternally supplied mRNA located in the terminal regions of the early cleavage furrows. PGCs from donor species (or strains) are isolated and transplanted into host species to induce the germ-line chimera. Four methods for inducing germ-line chimera are described: blastomere transplantation, blastoderm-graft transplantation, transplantation of PGC from the genital ridge, and transplantation visualised PGC with GFP fluorescence. Several problems preventing the successful induction of germ-line chimera in various fish species are discussed. Surrogate production, however, opens the possibility of efficient fish-seed production and effective breeding and transfer of biodiversity to an aquaculture strain. Conservation and efficient utilisation of genetic resources will be achieved through surrogate production combined with the cryopreservation of PGCs

    Generation of clonal zebrafish line by androgenesis without egg irradiation

    Get PDF
    Generation of clonal zebrafish will facilitate large-scale genetic screening and help us to overcome other biological and biotechnological challenges due to their isogenecity. However, protocols for the development of clonal lines have not been optimized. Here, we sought to develop a novel method for generation of clonal zebrafish by androgenesis induced by cold shock. Androgenetic zebrafish doubled haploids (DHs) were induced by cold shock of just-fertilized eggs, and the eggs were then heat shocked to double the chromosome set. The yield rate of putative DHs relative to the total number of eggs used was 1.10% ± 0.19%. Microsatellite genotyping of the putative DHs using 30 loci that covered all 25 linkage groups detected no heterozygous loci, confirming the homozygosity of the DHs. Thus, a clonal line was established from sperm of a DH through a second cycle of cold-shock androgenesis and heat-shock chromosome doubling, followed by genetic verification of the isogenic rate confirming the presence of identical DNA fingerprints by using amplified fragment length polymorphism markers. In addition, our data provided important insights into the cytological mechanisms of cold-shock–induced androgenesis

    Androgenetic doubled haploids induced without irradiation of eggs in loach (Misgurnus anguillicaudatus)

    Get PDF
    Androgenetic doubled haploids (DHs) were induced in the loach Misgurnus anguillicaudatus (Cobitidae) without irradiation of the eggs. The eggs of wild-type females were activated with the intact sperm of an orange-phenotype male, and treated (within 10 s of activation) at 3 ± 0.5 °C for 30 min, to eliminate the female nucleus. The eggs were then incubated in a water bath at 20 ± 0.5 °C for 35 min. Finally, diploidy was restored (65 min after activation) by heat-shock treatment at 42 ± 0.5 °C for 2 min. Under these conditions, the yield rate (mean ± SD) of putative DHs relative to the total number of eggs used was 10.43 ± 1.69%, which was significantly higher (P < 0.05) than the yield rates obtained under the remaining heat-shock initiation conditions (55 min, 60 min, and 70 min after activation). We analyzed the ploidy status of the putative DH by using flow cytometry. All-male inheritance was confirmed by the expression of the recessive orange body color trait and microsatellite genotypes. We detected no maternally derived alleles or heterozygous genotypes at any of the 28 loci (covering 27 linkage groups) of loach, indicating the exclusively paternal inheritance and homozygosity of the obtained androgenetic DHs

    Non-motile tetraploid spermatozoa of Misgurnus loach hybrids

    Get PDF
    We have compared various properties of spermatozoa from the wild diploid male pond loach Misgurnus anguillicaudatus to those from the interspecific male hybrid of the cross between a female M. anguillicaudatus and a male mud loach M. mizolepis. Our results show that spermatozoa from this interspecific hybrid had poor motility, low viability, abnormal morphology, a larger volume of mitochondrial mass per cell and higher ATP content of spermatozoa with tetraploid DNA content, and they were present at a low concentration. The interspecific hybrid males produced spermatozoa with a larger head, with either no flagellum (36.4 %), one flagellum (46.7 %) or two flagella (16.9 %). These flagella were shorter than those of the normal wild-type male M. anguillicaudatus and often presented with abnormalities in microtubule structure. An abnormally shorter flagellum has difficulty in propelling tetraploid spermatozoa with an increased head size in normal progressive motility, although they had higher energy, as shown by their larger volume of mitochondrial mass and higher ATP content. These tetraploid spermatozoa are likely produced by the arrest of the regular meiotic division after chromosomal replication, followed by abnormal spermiogenesis

    Developmental Stages and Germ Cell Lineage of the Loach (Misgurnus anguillicaudatus)

    Get PDF
    The staging of embryonic and larval development, and the germ cell lineage of the loach, Misgurnus anguillicaudatus, are described. Fertilized eggs were obtained by artificial insemination. For the convenience of detailed observation and photography of the external appearance, we use dechorionated embryos. Through a series of operations, these embryos were cultured at 20°C in an incubator. Embryonic and larval development of the loach was divided into five periods: cleavage, blastula, gastrula, segmentation, and hatching. Stages were assigned within each of these periods. Developmental stages were determined and named by morphological features and somite number. The staging series were photographed and tabulated. The germ cell lineage was then elucidated by whole mount in situ hybridization of mRNA expression of the germ-cell-specific marker vasa and histological analysis. Primordial germ cells (PGCs) of the loach derived from the cleavage furrows of 8-cell stage embryos began proliferation in the late blastula period and migrated to the gonadal anlagen through a migration pathway similar to that of the zebrafish. However, it is characteristic of the loach that PGCs migrate a long distance and stay in the posterior part of the yolk-extension region

    Intra-ooplasmic injection of a multiple number of sperm to induce androgenesis and polyploidy in the dojo loach Misgurnus anguillicaudatus (Teleostei: Cobitidae)

    Get PDF
    Polyspermy was initiated by microinjecting a multiple number of sperm into the activated and dechorionated eggs of dojo loach Misgurnus anguillicaudatus (Teleostei: Cobitidae). A 10-nL sperm suspension from an albino (recessive trait) male (105, 106, 107, or 108 sperm mL-1) was microinjected into eggs from a wild-type female. Although the rates of embryos developing into the blastula stage in the injection group at the highest sperm concentration were similar to that of the control group, the hatching rates of the injection group were much lower. A large proportion of embryos that developed from the injected eggs were haploid and mosaics containing haploid cells. Most of the haploid and mosaic embryos inherited only paternally derived alleles in the microsatellite markers (i.e., androgenesis was initiated by injecting multiple sperm). In contrast, some haploid embryos contained both paternal and maternal alleles despite haploidy, suggesting that they were mosaics consisting of cells with either paternal or maternal inheritance. The injected eggs displayed diploid, hypotriploid, and triploid cells, all of which included both maternally and paternally derived alleles. One albino tetraploid with only paternal alleles was also observed from the injected eggs. These results suggest that part of the sperm microinjected into the ooplasm should form a male pronucleus(-i), which could develop by androgenesis or could fuse with the female pronucleus(-i). Thus, microinjecting multiple sperm is considered a potential technique by which to induce androgenesis and polyploidy

    The origin and migration of primordial germ cells in sturgeons

    Get PDF
    Primordial germ cells (PGCs) arise elsewhere in the embryo and migrate into developing gonadal ridges during embryonic development. In several model animals, formation and migration patterns of PGCs have been studied, and it is known that these patterns vary. Sturgeons (genus Acipenser) have great potential for comparative and evolutionary studies of development. Sturgeons belong to the super class Actinoptergii, and their developmental pattern is similar to that of amphibians, although their phylogenetic position is an out-group to teleost fishes. Here, we reveal an injection technique for sturgeon eggs allowing visualization of germplasm and PGCs. Using this technique, we demonstrate that the PGCs are generated at the vegetal pole of the egg and they migrate on the yolky cell mass toward the gonadal ridge. We also provide evidence showing that PGCs are specified by inheritance of maternally supplied germplasm. Furthermore, we demonstrate that the migratory mechanism is well-conserved between sturgeon and other remotely related teleosts, such as goldfish, by a single PGCs transplantation (SPT) assay. The mode of PGCs specification in sturgeon is similar to that of anurans, but the migration pattern resembles that of teleosts

    Germ cells are not the primary factor for sexual fate determination in goldfish

    Get PDF
    The presence of germ cells in the early gonad is important for sexual fate determination and gonadal development in vertebrates. Recent studies in zebrafish and medaka have shown that a lack of germ cells in the early gonad induces sex reversal in favor of a male phenotype. However, it is uncertain whether the gonadal somatic cells or the germ cells are predominant in determining gonadal fate in other vertebrate. Here, we investigated the role of germ cells in gonadal differentiation in goldfish, a gonochoristic species that possesses an XX-XY genetic sex determination system. The primordial germ cells (PGCs) of the fish were eliminated during embryogenesis by injection of a morpholino oligonucleotide against the dead end gene. Fish without germ cells showed two types of gonadal morphology: one with an ovarian cavity; the other with seminiferous tubules. Next, we tested whether function could be restored to these empty gonads by transplantation of a single PGC into each embryo, and also determined the gonadal sex of the resulting germline chimeras. Transplantation of a single GFP-labeled PGC successfully produced a germline chimera in 42.7% of the embryos. Some of the adult germline chimeras had a developed gonad on one side that contained donor derived germ cells, while the contralateral gonad lacked any early germ cell stages. Female germline chimeras possessed a normal ovary and a germ-cell free ovary-like structure on the contralateral side; this structure was similar to those seen in female morphants. Male germline chimeras possessed a testis and a contralateral empty testis that contained some sperm in the tubular lumens. Analysis of aromatase, foxl2 and amh expression in gonads of morphants and germline chimeras suggested that somatic transdifferentiation did not occur. The offspring of fertile germline chimeras all had the donor-derived phenotype, indicating that germline replacement had occurred and that the transplanted PGC had rescued both female and male gonadal function. These findings suggest that the absence of germ cells did not affect the pathway for ovary or testis development and that phenotypic sex in goldfish is determined by somatic cells under genetic sex control rather than an interaction between the germ cells and somatic cells
    corecore