3,202 research outputs found
On semi-transitive orientability of Kneser graphs and their complements
An orientation of a graph is semi-transitive if it is acyclic, and for any
directed path either
there is no edge between and , or is an edge
for all . An undirected graph is semi-transitive if it admits
a semi-transitive orientation. Semi-transitive graphs include several important
classes of graphs such as 3-colorable graphs, comparability graphs, and circle
graphs, and they are precisely the class of word-representable graphs studied
extensively in the literature.
In this paper, we study semi-transitive orientability of the celebrated
Kneser graph , which is the graph whose vertices correspond to the
-element subsets of a set of elements, and where two vertices are
adjacent if and only if the two corresponding sets are disjoint. We show that
for , is not semi-transitive, while for , is semi-transitive. Also, we show computationally that a
subgraph on 16 vertices and 36 edges of , and thus itself
on 56 vertices and 280 edges, is non-semi-transitive. and are the
first explicit examples of triangle-free non-semi-transitive graphs, whose
existence was established via Erd\H{o}s' theorem by Halld\'{o}rsson et al. in
2011. Moreover, we show that the complement graph of
is semi-transitive if and only if
- β¦