825 research outputs found

    Computational intelligence-based steganalysis comparison for RCM-DWT and PVA-MOD methods

    Get PDF
    This research article proposes data hiding technique for improving the data hiding procedure and securing the data transmission with the help of contrast mapping technique along with advanced data encryption standard. High data hiding capacity, image quality and security are the measures of steganography. Of these three measures, number of bits that can be hidden in a single cover pixel, bits per pixel (bpp), is very important and many researchers are working to improve the bpp. We propose an improved high capacity data hiding method that maintains the acceptable image quality that is more than 30 dB and improves the embedding capacity higher than that of the methods proposed in recent years. The method proposed in this paper uses notational system and achieves higher embedding rate of 4 bpp and also maintain the good visual quality. To measure the efficiency of the proposed information hiding methodology, a simulation system was developed with some of impairments caused by a communication system. PSNR (Peak Signal to Noise ratio) is used to verify the robustness of the images. The proposed research work is verified in accordance to noise analysis. To evaluate the defencing performance during attack RS steganalysis is used

    Capturing regional differences in flood vulnerability improves flood loss estimation

    Get PDF
    Flood vulnerability is quantified by loss models which are developed using either empirical or synthetic approaches. In reality, processes influencing flood risk are stochastic and loss predictions bear significant uncertainty, especially due to differences in vulnerability across exposed objects and regions. However, many state-of-the-art flood loss models are deterministic, i.e., they do not account for data and model uncertainty. The Bayesian Data-Driven Synthetic (BDDS) model was one of the first approaches that used empirical data to reduce the prediction errors at object-level and enhance the reliability of synthetic flood loss models. However, the BDDS model does not account for regional differences in vulnerability which may result in over-/under-estimation of losses in some regions. In order to overcome this limitation, this study introduces a hierarchical parameterization of the BDDS model which enhances synthetic flood loss model predictions by quantifying regional differences in vulnerability. The hierarchical parameterization makes optimal use of the process information contained in the overall data set for the various regional applications, so that it is particularly suitable for cases in which only a small amount of empirical data is available. The implementation and performance of the hierarchical parametrization is demonstrated with the Multi-Colored Manual (MCM) loss functions and empirical damage dataset from the UK consisting of residential buildings from the regions Appleby, Carlisle, Kendal and Cockermouth that suffered losses during the 2015 flood event. The developed model improves prediction accuracy of flood loss compared to MCM by reducing the absolute error and bias by at least 23 and 90%, respectively. The model reliability in terms of hit rate (i.e., the probability that the observed value lies in the 90% high density interval of predictions) is 88% for residential buildings from the same regions used for calibration and 73% for residential buildings from new regions. The approach is of high practical relevance for all regions where only limited amounts of empirical flood loss data is available

    Physiological, Anatomical and Metabolic Implications of Salt Tolerance in the Halophyte Salvadora persica under Hydroponic Culture Condition

    Get PDF
    Salt tolerance mechanism of an extreme halophyte Salvadora persica was assessed by analysing growth, nutrient uptake, anatomical modifications and alterations in levels of some organic metabolites in seedlings imposed to various levels of salinity (0, 250, 500 and 750 mM NaCl) under hydroponic culture condition. After 21 days of salt treatment, plant height, leaf area and shoot biomass decreased with increase in salinity whereas the leaf succulence increased significantly with increasing salinity in S. persica. The RWC% of leaf increased progressively in salt-treated seedlings as compared to control. Na+ contents of leaf, stem and root increased in dose-dependent manner whereas there was no significant changes in K+ content. There was significant alterations in leaf, stem and root anatomy by salinity. The thickness of epidermis and spongy parenchyma of leaf increased in salt treated seedlings as compared to control, whereas palisade parenchyma decreased dramatically in extreme salinity (750 mM NaCl). There was a significant reduction in stomatal density and stomatal pore area of leaf with increasing salinity. Anatomical observations of stem showed that the epidermal cells diameter and thickness of cortex decreased by salinity whereas thickness of hypodermal layer, hypodermal cell diameter, pith area and pith cell diameter increased by high salinity. The root anatomy showed an increase in epidermal thickness by salinity whereas diameters of epidermal cells and xylem vessels decreased. Total soluble sugar content remained unchanged at all levels of salinity whereas reducing sugar content increased by 2-fold at high salinity (750 mM NaCl). The starch content of leaf decreased progressively in NaCl treated seedlings as compared to control. Total free amino acid content did not change at low salinity (250 mM), whereas it increased significantly at higher salinity (500 and 750 mM NaCl). The proline content increased in the NaCl treated seedlings as compared to control. There was no significant changes in polyphenol levels in leaf at all levels of salinity. The results from the present study reveal that seedlings imposed with various levels of salinity experience physiological, biochemical and anatomical modifications in order to circumvent under extreme saline environment. The vital mechanisms of salt tolerance in thi

    SPECTROPHOTOMETRIC METHOD FOR THE DETERMINATION OF AMIKACIN IN PURE AND PHARMACEUTICAL DOSAGE FORM

    Get PDF
    Objective: The aim of the study was to develop an easy, sensible and rapid method for the estimation of amikacin in both pure and marketed formulation using the spectrophotometric method.Methods: Due to lack of chromophoric group in the amikacin, it was derivatized with 0.1 mmol chloranillic acid reagent. For the estimation of amikacin, Shimadzu UV-1700 model spectrophotometer with UV probe software was used. The method was based on simple charge transfer complexation of the drug with a p-chloranillic acid reagent to give a purple coloured product which was measured at 524nm against blank solution.Results: The derivatised product of amikacin was detected at a wavelength of 524 nm. Linearity was observed with the concentration range of 20-100 µg/ml with a regression coefficient of 0.9803. Results of all the parameters were within the acceptance criteria with % RSD less than 2.Conclusion: The spectroscopic method was validated as per ICH guidelines and was found to be applicable for routine quantitative analysis of amikacin in marketed formulations also. The results of linearity, precision, accuracy LOD and LOQ were within the specified limits. The method is highly sensitive, robust, reproducible and specific.Â

    DESIGN, SYNTHESIS, IN VITRO ANTIOXIDANT AND IN VIVO ANTI-INFLAMMATORY ACTIVITIES OF NOVEL OXADIAZOLE DERIVATIVES

    Get PDF
    Objective: In the present study, a series of novel 1,3,4-oxadiazole derivatives (3a-3q) were designed, synthesized and evaluated for antioxidant and anti-inflammatory activities.Methods: The title compounds were designed and docked onto the COX-2 enzyme (3LN1) protein using SYBYLX 2.1. 2-substituted-5-(5-nitrobenzofuran-2-yl)-1,3,4-oxadiazole derivatives (3a-3p) were synthesized from acid catalyzed dehydrative cyclization of 5-nitrobenzofuran-2-carbohydrazide (2) with various heteroaryl/aryl/aliphatic carboxylic acid derivatives. And 5-(5-nitrobenzofuran-2-yl)-1,3,4-oxadiazole-2-thiol (3q) was synthesized on reacting the hydrazide derivative 2 with carbon disulfide. The synthesized compounds were evaluated for in vitro antioxidant property by DPPH radical scavenging assay method and in vivo anti-inflammatory activity by carrageenan induced paw edema method.Results: The synthesized 1,3,4-oxadiazole derivatives (3a-3q) were characterized on the basis of LCMS, 1HNMR [13]CNMR, IR and elemental analysis. The title compounds 3a-3q exhibited significant antioxidant efficacy ranging from 34 to 86%and the results of anti-inflammatory evaluation revealed that compounds 3c, 3e and 3d exhibited substantial anti-inflammatory activity of 72, 68 and 65%, respectively, at a dose of 50 mg kg-1.Conclusion: A significant correlation was observed between the in silico study and the anti-inflammatory results. The anti-inflammatory results highlight the synthesized compounds 3c, 3e and 3d could be considered as possible hit as therapeutic agents.Â

    DETERMINATION OF OCTANOL-WATER PARTITION COEFFICIENT OF NOVEL COUMARIN BASED ANTICANCER COMPOUNDS BY REVERSED-PHASE ULTRA-FAST LIQUID CHROMATOGRAPHY

    Get PDF
    Objective: The present study aims at the development of a reversed phase ultra-fast liquid chromatography (RP-UFLC) method for measurement of the lipophilicity (log P) between n-octanol and water for the newly synthesized coumarin derivatives in our laboratory.Methods: The synthesized compounds were dissolved in methanol and analyzed using XTerra RP18 column as the stationary phase and a mixture of methanol (0.25% v/v octanol) and buffer as the mobile phase with isocratic elution.Results: In this study we concentrated on the relationship between a reversed-phase ultra-fast liquid chromatography (RP-UFLC) retention parameters and log P of our synthesized compounds. Furthermore, a good correlation and very close values were obtained between the experimentally determined log P values and values obtained from Chemdraw.Conclusion: The developed method was found to be insensitive to any of the impurities present and moreover it requires very little sample for analysis

    VALIDATION OF STABILITY INDICATING ULTRA-FAST LIQUID CHROMATOGRAPHY METHOD FOR SIMULTANEOUS ESTIMATION OF ATENOLOL and NIFEDIPINE IN BOTH BULK AND PHARMACEUTICAL DOSAGE FORMS

    Get PDF
    Objective: The study depicts improvement of ensuing validation of a stability indicating technique for the simultaneous estimation of Atenolol and Nifedipine using Ultra-fast liquid chromatographic method (UFLC).Methods: The analysis is performed on Phenomenex Kinetex C18, (150 × 4.6 mm, 5μm) column using methanol and 0.1%ortho-phosphoric acids (75:25 v/v) as mobile phase with a flow rate of 1.3 ml/min. The eluents were checked with PDA detector at 237 nm.Results: In this optimized conditions Atenolol and Nifedipine elutes at a retention time of 2.79 and 4.50 min respectively individually the considered optimized condition is having linearity in the range from 10 to 50µg/ml of Atenolol and 4-20µg/ml of Nifedipine. The method was validated by following the ICH guidelines and their combination drug yield was exposed to acid and base stress, thermal stress, photolytic stress, hydrolytic stress, and oxidative stress conditions. All samples were studied by the given optimized method. In this Calibration curves were linear over studies ranges with correlation coefficient found between the ranges of 0.99 to 1.00.Conclusion: The proposed method was found to be accurate, precise, and specific and suitable for determination of both the drugs

    Estimating cost of production of coconut in a region

    Get PDF
    A methodology for estimating cost of production of coconut in a region is proposed by taking into account the establishment cost of the garden as well as the annual maintenance cost. Stratified multistage sampling design was adopted for collecting data from different growth stages of the crop. District level estimates of cost of production of coconut have been worked out on the basis of a survey carried out in three districts of Kerala state namely Kozhikode, Ernakulam and Thiruvannanthpuram. The cost of production of coconut (i.e., all paid out cost (Cost A) + imputed family labour) per 100 nuts, in Kozhikode, Ernakulam and Thiruvannanthpuram districts as estimated from the survey data is Rs. 198, 374 and 293, respectively for the year 2001. The per cent standard error obtained was 11.18, 15.4 and 15.45 in that order. The methodology evolved in this study can be used for arriving cost of production in all the major coconut growing districts/states in India

    CuInS2 Nanosheet Arrays with a MoS2 Heterojunction as a Photocathode for PEC Water Splitting

    Get PDF
    Developing cost-effective noble metal-free co-catalysts as alternatives to platinum group metals is an impeccable strategy to enhance photoelectrochemical (PEC) water splitting. In this report, we successfully fabricated CuInS2 nanosheet array-based photocathode modified with CdS and co-catalyst MoS2 in a green approach to improve water splitting under solar irradiation. The visible light absorption of the modified hybrid photocathode (CIS/CdS/MoS2) was significantly enhanced due to introducing CdS and MoS2. Photoluminescence, impedance spectroscopy, and Mott-Schottky analysis depicted improved separation of excited electron-hole pairs, minimized resistance of charge transfer, and increased excited-state charge carrier concentration, resulting in increased photocurrent. Typical results indicated that composite photoelectrodes delivered higher photocurrent (−1.75 mA/cm2 at 0 V vs RHE) and HC-STH conversion efficiency (0.42% at 0.49 V vs RHE) than those of CIS and CIS/CdS photoelectrodes. This improved PEC performance is accredited to the synergetic impact of CdS in charge generation and transfer and MoS2 as a cocatalyst with active surface sites for proton reduction. This study not only reveals the promising nature of CuInS2-based light absorber photocathodes for solar energy utilization but also recommends the use of MoS2 as a cocatalyst for the proton reduction reactions for widespread applications in solar to hydrogen conversion
    corecore