11 research outputs found

    Effect of driving cycles on the particulate mass and number emissions from in-use heavy heavy-duty diesel vehicles

    Get PDF
    This study focused primarily on the particle mass and number emission from various in-use heavy heavy-duty diesel vehicles operating on different driving cycles. Chemical speciation results are also presented to discuss the formation and composition of particles emitted during various cycles. Tests were performed with West Virginia University\u27s Transportable Heavy Duty Vehicle Emissions Testing Laboratory located at Riverside, California. Five vehicles were selected to cover a wide range of model year from 1989 to 2004. All five vehicles were subjected to chemical speciation and analysis conducted by Desert Research Institute. WVU employed the use of the Scanning Mobility Particle Sizer (SMPS) to measure particle size distributions. Regulated gaseous emissions and total particulate matter from the exhaust were sampled from a full-flow CVS dilution tunnel system. A mini-dilution system was dedicated specifically for particle sizing, which samples partially from the raw exhaust. All vehicles were subjected to California\u27s Heavy Heavy-Duty Diesel Truck (HHDDT) schedule which consisted of an idle, creep, transient and cruise mode. Particle size and chemical speciation data are presented only for the idle and cruise modes. (Abstract shortened by UMI.)

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Evidence for a hyper-reductive redox in a sub-set of heart failure patients

    No full text
    Abstract Background Oxidative stress has been linked to heart failure (HF) in humans. Antioxidant-based treatments are often ineffective. Therefore, we hypothesize that some of the HF patients might have a reductive stress (RS) condition. Investigating RS-related mechanisms will aid in personalized optimization of redox homeostasis for better outcomes among HF patients. Methods Blood samples were collected from HF patients (n = 54) and healthy controls (n = 42) and serum was immediately preserved in − 80 °C for redox analysis. Malondialdehyde (MDA; lipid peroxidation) levels by HPLC, reduced glutathione (GSH) and its redox ratio (GSH/GSSG) using enzymatic-recycling assay in the serum of HF patients were measured. Further, the activities of key antioxidant enzymes were analyzed by UV–Vis spectrophotometry. Non-invasive echocardiography was used to relate circulating redox status with cardiac function and remodeling. Results The circulatory redox state (GSH/MDA ratio) was used to stratify the HF patients into normal redox (NR), hyper-oxidative (HO), and hyper-reductive (HR) groups. While the majority of the HF patients exhibited the HO (42%), 41% of them had a normal redox (NR) state. Surprisingly, a subset of HF patients (17%) belonged to the hyper-reductive group, suggesting a strong implication for RS in the progression of HF. In all the groups of HF patients, SOD, GPx and catalase were significantly increased while GR activity was significantly reduced relative to healthy controls. Furthermore, echocardiography analyses revealed that 55% of HO patients had higher systolic dysfunction while 62.5% of the hyper-reductive patients had higher diastolic dysfunction. Conclusion These results suggest that RS may be associated with HF pathogenesis for a subset of cardiac patients. Thus, stratification of HF patients based on their circulating redox status may serve as a useful prognostic tool to guide clinicians designing personalized antioxidant therapies

    Chronic Endurance Exercise Impairs Cardiac Structure and Function in Middle-Aged Mice with Impaired Nrf2 Signaling

    No full text
    Nuclear factor erythroid 2 related factor 2 (Nrf2) signaling maintains the redox homeostasis and its activation is shown to suppress cardiac maladaptation. Earlier we reported that acute endurance exercise (2 days) evoked antioxidant cytoprotection in young WT animals but not in aged WT animals. However, the effect of repeated endurance exercise during biologic aging (WT) characterized by an inherent deterioration in Nrf2 signaling and pathological aging (pronounced oxidative susceptibility—Nrf2 absence) in the myocardium remains elusive. Thus, the purpose of our study was to determine the effect of chronic endurance exercise-induced cardiac adaptation in aged mice with and without Nrf2. Age-matched WT and Nrf2-null mice (Nrf2−/−) (>22 months) were subjected to 6 weeks chronic endurance exercise (25 meter/min, 12% grade). The myocardial redox status was assessed by expression of antioxidant defense genes and proteins along with immunochemical detection of DMPO-radical adduct, GSH-NEM, and total ubiquitination. Cardiac functions were assessed by echocardiography and electrocardiogram. At sedentary state, loss of Nrf2 resulted in significant downregulation of antioxidant gene expression (Nqo1, Ho1, Gclm, Cat, and Gst-α) with decreased GSH-NEM immuno-fluorescence signals. While Nrf2−/− mice subjected to CEE showed an either similar or more pronounced reduction in the transcript levels of Gclc, Nqo1, Gsr, and Gst-α in relation to WT littermates. In addition, the hearts of Nrf2−/− on CEE showed a substantial reduction in specific antioxidant proteins, G6PD and CAT along with decreased GSH, a pronounced increase in DMPO-adduct and the total ubiquitination levels. Further, CEE resulted in a significant upregulation of hypertrophy genes (Anf, Bnf, and β-Mhc) (p < 0.05) in the Nrf2−/− hearts in relation to WT mice. Moreover, the aged Nrf2−/− mice exhibited a higher degree of cardiac remodeling in association with a significant decrease in fractional shortening, pronounced ST segment, and J wave elevation upon CEE compared to age-matched WT littermates. In conclusion, our findings indicate that while the aged WT and Nrf2 knockout animals both exhibit hypertrophy after CEE, the older Nrf2 knockouts showed ventricular remodeling coupled with profound cardiac functional abnormalities and diastolic dysfunction
    corecore