60 research outputs found

    A homomorphism between link and XXZ modules over the periodic Temperley-Lieb algebra

    Full text link
    We study finite loop models on a lattice wrapped around a cylinder. A section of the cylinder has N sites. We use a family of link modules over the periodic Temperley-Lieb algebra EPTL_N(\beta, \alpha) introduced by Martin and Saleur, and Graham and Lehrer. These are labeled by the numbers of sites N and of defects d, and extend the standard modules of the original Temperley-Lieb algebra. Beside the defining parameters \beta=u^2+u^{-2} with u=e^{i\lambda/2} (weight of contractible loops) and \alpha (weight of non-contractible loops), this family also depends on a twist parameter v that keeps track of how the defects wind around the cylinder. The transfer matrix T_N(\lambda, \nu) depends on the anisotropy \nu and the spectral parameter \lambda that fixes the model. (The thermodynamic limit of T_N is believed to describe a conformal field theory of central charge c=1-6\lambda^2/(\pi(\lambda-\pi)).) The family of periodic XXZ Hamiltonians is extended to depend on this new parameter v and the relationship between this family and the loop models is established. The Gram determinant for the natural bilinear form on these link modules is shown to factorize in terms of an intertwiner i_N^d between these link representations and the eigenspaces of S^z of the XXZ models. This map is shown to be an isomorphism for generic values of u and v and the critical curves in the plane of these parameters for which i_N^d fails to be an isomorphism are given.Comment: Replacement of "The Gram matrix as a connection between periodic loop models and XXZ Hamiltonians", 31 page

    Statistical properties of the low-temperature conductance peak-heights for Corbino discs in the quantum Hall regime

    Full text link
    A recent theory has provided a possible explanation for the ``non-universal scaling'' of the low-temperature conductance (and conductivity) peak-heights of two-dimensional electron systems in the integer and fractional quantum Hall regimes. This explanation is based on the hypothesis that samples which show this behavior contain density inhomogeneities. Theory then relates the non-universal conductance peak-heights to the ``number of alternating percolation clusters'' of a continuum percolation model defined on the spatially-varying local carrier density. We discuss the statistical properties of the number of alternating percolation clusters for Corbino disc samples characterized by random density fluctuations which have a correlation length small compared to the sample size. This allows a determination of the statistical properties of the low-temperature conductance peak-heights of such samples. We focus on a range of filling fraction at the center of the plateau transition for which the percolation model may be considered to be critical. We appeal to conformal invariance of critical percolation and argue that the properties of interest are directly related to the corresponding quantities calculated numerically for bond-percolation on a cylinder. Our results allow a lower bound to be placed on the non-universal conductance peak-heights, and we compare these results with recent experimental measurements.Comment: 7 pages, 4 postscript figures included. Revtex with epsf.tex and multicol.sty. The revised version contains some additional discussion of the theory and slightly improved numerical result

    Conformal Curves in Potts Model: Numerical Calculation

    Full text link
    We calculated numerically the fractal dimension of the boundaries of the Fortuin-Kasteleyn clusters of the qq-state Potts model for integer and non-integer values of qq on the square lattice. In addition we calculated with high accuracy the fractal dimension of the boundary points of the same clusters on the square domain. Our calculation confirms that this curves can be described by SLEκ_{\kappa}.Comment: 11 Pages, 4 figure

    Deformed strings in the Heisenberg model

    Full text link
    We investigate solutions to the Bethe equations for the isotropic S = 1/2 Heisenberg chain involving complex, string-like rapidity configurations of arbitrary length. Going beyond the traditional string hypothesis of undeformed strings, we describe a general procedure to construct eigenstates including strings with generic deformations, discuss general features of these solutions, and provide a number of explicit examples including complete solutions for all wavefunctions of short chains. We finally investigate some singular cases and show from simple symmetry arguments that their contribution to zero-temperature correlation functions vanishes.Comment: 34 pages, 13 figure

    SLE local martingales in logarithmic representations

    Full text link
    A space of local martingales of SLE type growth processes forms a representation of Virasoro algebra, but apart from a few simplest cases not much is known about this representation. The purpose of this article is to exhibit examples of representations where L_0 is not diagonalizable - a phenomenon characteristic of logarithmic conformal field theory. Furthermore, we observe that the local martingales bear a close relation with the fusion product of the boundary changing fields. Our examples reproduce first of all many familiar logarithmic representations at certain rational values of the central charge. In particular we discuss the case of SLE(kappa=6) describing the exploration path in critical percolation, and its relation with the question of operator content of the appropriate conformal field theory of zero central charge. In this case one encounters logarithms in a probabilistically transparent way, through conditioning on a crossing event. But we also observe that some quite natural SLE variants exhibit logarithmic behavior at all values of kappa, thus at all central charges and not only at specific rational values.Comment: 40 pages, 7 figures. v3: completely rewritten, new title, new result

    Anisotropy of magnetothermal conductivity in Sr2RuO4

    Full text link
    The dependence of in-plane and interplane thermal conductivities of Sr2RuO4 on temperature, as well as magnetic field strength and orientation, is reported. We found no notable anisotropy in the thermal conductivity for the magnetic field rotation parallel to the conducting plane in the whole range of experimental temperatures and fields, except in the vicinity of the upper critical field Hc2, where the anisotropy of the Hc2 itself plays a dominant role. This finding imposes strong constraints on the possible models of superconductivity in Sr2RuO4 and supports the existence of a superconducting gap with a line of nodes running orthogonal to the Fermi surface cylinder.Comment: published in Phys. Rev. Lett. 4pages, 4 eps figures, LaTe

    Proposal for a CFT interpretation of Watts' differential equation for percolation

    Full text link
    G. M. T. Watts derived that in two dimensional critical percolation the crossing probability Pi_hv satisfies a fifth order differential equation which includes another one of third order whose independent solutions describe the physically relevant quantities 1, Pi_h, Pi_hv. We will show that this differential equation can be derived from a level three null vector condition of a rational c=-24 CFT and motivate how this solution may be fitted into known properties of percolation.Comment: LaTeX, 20p, added references, corrected typos and additional content

    Linking Backlund and Monodromy Charges for Strings on AdS_5 x S^5

    Full text link
    We find an explicit relation between the two known ways of generating an infinite set of local conserved charges for the string sigma model on AdS_5 x S^5: the Backlund and monodromy approaches. We start by constructing the two-parameter family of Backlund transformations for the string with an arbitrary world-sheet metric. We then show that only for a special value of one of the parameters the solutions generated by this transformation are compatible with the Virasoro constraints. By solving the Backlund equations in a non-perturbative fashion, we finally show that the generating functional of the Backlund conservation laws is equal to a certain sum of the quasi-momenta. The positions of the quasi-momenta in the complex spectral plane are uniquely determined by the real parameter of the Backlund transform.Comment: 25 pages, 1 figur
    corecore