7,125 research outputs found

    Future supernovae data and quintessence models

    Full text link
    The possibility to unambiguously determine the equation-of-state of the cosmic dark energy with existing and future supernovae data is investigated. We consider four evolution laws for this equation-of-state corresponding to four quintessential models, i.e. i) a cosmological constant, ii) a general barotropic fluid, iii) a perfect fluid with a linear equation-of-state and iv) a more physical model based on a pseudo-Nambu-Goldstone boson field. We explicitly show the degeneracies present not only within each model but also between the different models : they are caused by the multi-integral relation between the equation-of-state of dark energy and the luminosity distance. Present supernova observations are analysed using a standard χ2\chi^2 method and the minimal χ2\chi^2 values obtained for each model are compared. We confirm the difficulty to discriminate between these models using present SNeIa data only. By means of simulations, we then show that future SNAP observations will not remove all the degeneracies. For example, wrong estimations of Ωm\Omega_m with a good value of χmin2\chi^2_{min} could be found if the right cosmological model is not used to fit the data. We finally give some probabilities to obtain unambiguous results, free from degeneracies. In particular, the probability to confuse a cosmological constant with a true barotropic fluid with an equation-of-state different from -1 is shown to be 95% at a 2σ2 \sigma level.Comment: 12 pages. This improved version has been accepted for publication in M.N.R.A.

    Production of trans-Neptunian binaries through chaos-assisted capture

    Full text link
    The recent discovery of binary objects in the Kuiper-belt opens an invaluable window into past and present conditions in the trans-Neptunian part of the Solar System. For example, knowledge of how these objects formed can be used to impose constraints on planetary formation theories. We have recently proposed a binary-object formation model based on the notion of chaos-assisted capture. Here we present a more detailed analysis with calculations performed in the spatial (three-dimensional) three- and four-body Hill approximations. It is assumed that the potential binary partners are initially following heliocentric Keplerian orbits and that their relative motion becomes perturbed as these objects undergo close encounters. First, the mass, velocity, and orbital element distribu- tions which favour binary formation are identified in the circular and elliptical Hill limits. We then consider intruder scattering in the circular Hill four-body problem and find that the chaos-assisted capture mechanism is consistent with observed, apparently randomly distributed, binary mutual orbit inclinations. It also predicts asymmetric distributions of retrograde versus prograde orbits. The time-delay induced by chaos on particle transport through the Hill sphere is analogous to the formation of a resonance in a chemical reaction. Implications for binary formation rates are considered and the 'fine-tuning' problem recently identified by Noll et al. (2007) is also addressed.Comment: submitted to MNRA

    On the dynamics of a collapsing bubble in contact with a rigid wall

    Full text link
    This work reveals that the dynamic response of a spherical cap bubble in contact with a rigid wall depends on the effective contact angle at the instant prior to collapse. This parameter allows us to discriminate between two regimes in which the mechanisms of interaction between the collapsing bubble and its surrounding medium differ significantly: When the contact angle is smaller than 90 degrees a classical jet directed towards the wall is observed whereas if the initial contact angle is larger than 90 degrees an annular re-entrant jet parallel to the wall appears. We show that this change of the behaviour can be explained using the impulse potential flow theory for small times which shows the presence of a singularity on the initial acceleration of the contact line when the contact angle is larger then 90 degrees. Direct Numerical Simulations show that although viscosity regularises the solution at t>0t > 0, the solution remains singular at t=0t=0. In these circumstances numerical and experimental results show that the collapse of flat bubbles can eventually lead to the formation of a vortex ring that unexpectedly induces long-range effects. The role of the bubble geometry at the instant of maximum expansion on the overall collapse process is shown to be well captured by the impulse potential flow theory, which can be easily generalised to other bubble shapes. These results may find direct application in the interpretation of geophysical flows as well as the control and design of bio-medical, naval, manufacturing and sonochemistry applications

    Metallic phase in stoichiometric CeOBiS 2 revealed by space-resolved ARPES

    Get PDF
    Recently CeOBiS2 system without any fluorine doping is found to show superconductivity posing question on its origin. Using space resolved ARPES we have found a metallic phase embedded in the morphological defects and at the sample edges of stoichiometric CeOBiS2. While bulk of the sample is semiconducting, the embedded metallic phase is characterized by the usual electron pocket at X point, similar to the Fermi surface of doped BiS2-based superconductors. Typical size of the observed metallic domain is larger than the superconducting correlation length of the system suggesting that the observed superconductivity in undoped CeOBiS2 might be due to this embedded metallic phase at the defects. The results also suggest a possible way to develop new systems by manipulation of the defects in these chalcogenides with structural instability

    Nonlocal regularization of abelian models with spontaneous symmetry breaking

    Get PDF
    We demonstrate how nonlocal regularization is applied to gauge invariant models with spontaneous symmetry breaking. Motivated by the ability to find a nonlocal BRST invariance that leads to the decoupling of longitudinal gauge bosons from physical amplitudes, we show that the original formulation of the method leads to a nontrivial relationship between the nonlocal form factors that can appear in the model.Comment: 11 pages, uses amsart. To appear in Mod. Phys. Lett

    Bi-layer splitting in overdoped high TcT_{c} cuprates

    Full text link
    Recent angle-resolved photoemission data for overdoped Bi2212 are explained. Of the peak-dip-hump structure, the peak corresponds the q⃗=0\vec q =0 component of a hole condensate which appears at TcT_c. The fluctuating part of this same condensate produces the hump. The bilayer splitting is large enough to produce a bonding hole and an electron antibonding quasiparticle Fermi surface. Smaller bilayer splittings observed in some experiments reflect the interaction of the peak structure with quasiparticle states near, but not at, the Fermi surface.Comment: 4 pages with 2 figures - published versio

    Cosmological scalar fields that mimic the ΛCDM\Lambda CDM cosmological model

    Full text link
    We look for cosmologies with a scalar field (dark energy without cosmological constant), which mimic the standard ΛCDM\Lambda CDM cosmological model yielding exactly the same large-scale geometry described by the evolution of the Hubble parameter (i.e. photometric distance and angular diameter distance as functions on zz). Asymptotic behavior of the field solutions is studied in the case of spatially flat Universe with pressureless matter and separable scalar field Lagrangians (power-law kinetic term + power-law potential). Exact analytic solutions are found in some special cases. A number of models have the field solutions with infinite behavior in the past or even singular behavior at finite redshifts. We point out that introduction of the cosmological scalar field involves some degeneracy leading to lower precision in determination of Ωm\Omega_m. To remove this degeneracy additional information is needed beyond the data on large-scale geometry.Comment: VIII International Conference "Relativistic Astrophysics, Gravitation and Cosmology": May 21-23, 2008, Kyiv, Ukrain

    An 8 GEV Linac As The Booster Replacement In The Fermilab Power Upgrade

    Full text link
    Increasing the Fermilab Main Injector (MI) beam power above ~1.2 MW requires replacement of the 8 GeV Booster by a higher intensity alternative. Earlier, rapid-cycling synchrotron and linac solutions were considered for this purpose. In this paper, we consider the linac version that produces 8 GeV H- beam for injection into the Recycler Ring (RR) or MI The new linac takes ~1 GeV beam from the PIP-II linac and accelerates it to ~ 2 GeV in a 650 MHz SRF linac, and then accelerates to ~8 GeV in an SRF pulsed linac using 1300 MHz cryomodules. The linac components incorporate recent improvements in SRF technology. This Booster Replacement linac (BRL) will increase MI beam power to DUNE to more than 2.5 MW and enable next-generation intensity frontier experiments.Comment: arXiv admin note: text overlap with arXiv:2203.0505

    Density functional electronic spectrum of the CuO−6−10Cu O_{-6}^{-10} cluster and possible local Jahn-Teller distorsions in the La-Ba-Cu-O superconductor

    Full text link
    We present a density functional theory (DFT) calculation in the generalized gradient approximation to study the possibility for the existence of Jahn-Teller (JT) or pseudo Jahn-Teller (PJT) type local distortions in the La-Ba-Cu-O superconducting system. We performed the calculation and correspondingly group theory classification of the electronic ground state of the CuO6−10{_{6}}^{-10} elongated octahedra cluster, immersed in a background simulating the superconductor. Part of the motivation to do this study is that the origin of the apical deformation of the CuO6−10{_{6}}^{-10} cluster is not due to a pure JT effect, having therefore a non {\it a priori} condition to remove the degeneracy of the electronic ground state of the parent regular octahedron. We present a comparative analysis of the symmetry classified electron spectrum with previously reported results using unrestricted Hartree-Fock calculations (UHF). Both the DFT and UHF calculations produced a non degenerate electronic ground state, not having therefore the necessary condition for a pure JT effect. However, the appearance of a degenerate Eg_{g} state near to the highest occupied molecular orbital in the DFT calculation, suggests the possibility for a PJT effect responsible for a local distortion of the oxidized CuO6−9_{6}^{-9} cluster.Comment: 12 pages, 3 figures, submitted to International Journal of Modern Physics B (IJMPB
    • …
    corecore