17 research outputs found

    Persistence, Adaptation and Diversity

    Get PDF
    Traditions aren\u27t static. They change and adapt over time to various circumstances. Cultures and identities are always evolving. It\u27s instructive to look at what aspects of cultures and identities persist over time and what aspects of other cultures maybe \u27assimilated\u27 or \u27acculturated\u27 into the existing belief structure of another culture

    Enterprise Reference Library

    Get PDF
    Introduction: Johnson Space Center (JSC) offers two extensive libraries that contain journals, research literature and electronic resources. Searching capabilities are available to those individuals residing onsite or through a librarian s search. Many individuals have rich collections of references, but no mechanisms to share reference libraries across researchers, projects, or directorates exist. Likewise, information regarding which references are provided to which individuals is not available, resulting in duplicate requests, redundant labor costs and associated copying fees. In addition, this tends to limit collaboration between colleagues and promotes the establishment of individual, unshared silos of information The Integrated Medical Model (IMM) team has utilized a centralized reference management tool during the development, test, and operational phases of this project. The Enterprise Reference Library project expands the capabilities developed for IMM to address the above issues and enhance collaboration across JSC. Method: After significant market analysis for a multi-user reference management tool, no available commercial tool was found to meet this need, so a software program was built around a commercial tool, Reference Manager 12 by The Thomson Corporation. A use case approach guided the requirements development phase. The premise of the design is that individuals use their own reference management software and export to SharePoint when their library is incorporated into the Enterprise Reference Library. This results in a searchable user-specific library application. An accompanying share folder will warehouse the electronic full-text articles, which allows the global user community to access full -text articles. Discussion: An enterprise reference library solution can provide a multidisciplinary collection of full text articles. This approach improves efficiency in obtaining and storing reference material while greatly reducing labor, purchasing and duplication costs. Most importantly, increasing collaboration across research groups provides unprecedented access to information relevant to NASA s mission. Conclusion: This project is an expansion and cost-effective leveraging of the existing JSC centralized library. Adding key word and author search capabilities and an alert function for notifications about new articles, based on users profiles, represent examples of future enhancements

    The Integrated Medical Model: A Probabilistic Simulation Model Predicting In-Flight Medical Risks

    Get PDF
    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints

    The Integrated Medical Model - A Risk Assessment and Decision Support Tool for Human Space Flight Missions

    Get PDF
    The Integrated Medical Model (IMM) is a decision support tool that is useful to space flight mission planners and medical system designers in assessing risks and optimizing medical systems. The IMM employs an evidence-based, probabilistic risk assessment (PRA) approach within the operational constraints of space flight

    Validation of the Nasa Integrated Medical Model: a Space Flight Medical Risk Prediction Tool

    Get PDF
    The Human Research Program funded the development of the Integrated Medical Model (IMM) to quantify the medical component of overall mission risk. The IMM uses Monte Carlo simulation methodology, incorporating space flight and ground medical data, to estimate the probability of mission medical outcomes and resource utilization. To determine the credibility of IMM output, the IMM project team completed two validation studies that compared IMM predicted output to observed medical events from a selection of Shuttle Transportation System (STS) and International Space Station (ISS) missions. The validation study results showed that the IMM underpredicted the occurrence of ~10% of the modeled medical conditions for the STS missions and overpredicted ~20% of the modeled medical conditions for the ISS missions. These findings imply that the strength of IMM predictions to inform decisions depends on simulated mission specifications including length. This discrepancy could result from medical recording differences between ISS and STS that possibly influence observed incidence rates, IMM combining all "mission type" data as constant occurrence rate or fixed proportion across both mission types, misspecification of symptoms to conditions, and gaps in the literature informing the model. Some of these issues will be alleviated by updating the IMM source data through incorporation of the observed validation data

    The NASA Human Research Wiki - An Online Collaboration Tool

    Get PDF
    The Exploration Medical Capability (ExMC) element is one of six elements of the Human Research Program (HRP). ExMC is charged with decreasing the risk of: "Inability to adequately recognize or treat an ill or injured crew member" for exploration-class missions In preparation for exploration-class missions, ExMC has compiled a large evidence base, previously available only to persons within the NASA community. ExMC has developed the "NASA Human Research Wiki" in an effort to make the ExMC information available to the general public and increase collaboration within and outside of NASA. The ExMC evidence base is comprised of several types of data, including: (1)Information on more than 80 medical conditions which could occur during space flight (a)Derived from several sources (b)Including data on incidence and potential outcomes, as captured in the Integrated Medical Model s (IMM) Clinical Finding Forms (CliFFs). (2)Approximately 25 gap reports (a)Identify any "gaps" in knowledge and/or technology that would need to be addressed in order to provide adequate medical support for these novel missions

    Integrated Medical Model Verification, Validation, and Credibility

    Get PDF
    The Integrated Medical Model (IMM) was designed to forecast relative changes for a specified set of crew health and mission success risk metrics by using a probabilistic (stochastic process) model based on historical data, cohort data, and subject matter expert opinion. A probabilistic approach is taken since exact (deterministic) results would not appropriately reflect the uncertainty in the IMM inputs. Once the IMM was conceptualized, a plan was needed to rigorously assess input information, framework and code, and output results of the IMM, and ensure that end user requests and requirements were considered during all stages of model development and implementation. METHODS: In 2008, the IMM team developed a comprehensive verification and validation (VV) plan, which specified internal and external review criteria encompassing 1) verification of data and IMM structure to ensure proper implementation of the IMM, 2) several validation techniques to confirm that the simulation capability of the IMM appropriately represents occurrences and consequences of medical conditions during space missions, and 3) credibility processes to develop user confidence in the information derived from the IMM. When the NASA-STD-7009 (7009) was published, the IMM team updated their verification, validation, and credibility (VVC) project plan to meet 7009 requirements and include 7009 tools in reporting VVC status of the IMM. RESULTS: IMM VVC updates are compiled recurrently and include 7009 Compliance and Credibility matrices, IMM VV Plan status, and a synopsis of any changes or updates to the IMM during the reporting period. Reporting tools have evolved over the lifetime of the IMM project to better communicate VVC status. This has included refining original 7009 methodology with augmentation from the NASA-STD-7009 Guidance Document. End user requests and requirements are being satisfied as evidenced by ISS Program acceptance of IMM risk forecasts, transition to an operational model and simulation tool, and completion of service requests from a broad end user consortium including Operations, Science and Technology Planning, and Exploration Planning. CONCLUSIONS: The VVC approach established by the IMM project of combining the IMM VV Plan with 7009 requirements is comprehensive and includes the involvement of end users at every stage in IMM evolution. Methods and techniques used to quantify the VVC status of the IMM have not only received approval from the local NASA community but have also garnered recognition by other federal agencies seeking to develop similar guidelines in the medical modeling community

    The Integrated Medical Model: A Risk Assessment and Decision Support Tool for Space Flight Medical Systems

    Get PDF
    The Integrated Medical Model (IMM) is a decision support tool that is useful to mission planners and medical system designers in assessing risks and designing medical systems for space flight missions. The IMM provides an evidence based approach for optimizing medical resources and minimizing risks within space flight operational constraints. The mathematical relationships among mission and crew profiles, medical condition incidence data, in-flight medical resources, potential crew functional impairments, and clinical end-states are established to determine probable mission outcomes. Stochastic computational methods are used to forecast probability distributions of crew health and medical resource utilization, as well as estimates of medical evacuation and loss of crew life. The IMM has been used in support of the International Space Station (ISS) medical kit redesign, the medical component of the ISS Probabilistic Risk Assessment, and the development of the Constellation Medical Conditions List. The IMM also will be used to refine medical requirements for the Constellation program. The IMM outputs for ISS and Constellation design reference missions will be presented to demonstrate the potential of the IMM in assessing risks, planning missions, and designing medical systems. The implementation of the IMM verification and validation plan will be reviewed. Additional planned capabilities of the IMM, including optimization techniques and the inclusion of a mission timeline, will be discussed. Given the space flight constraints of mass, volume, and crew medical training, the IMM is a valuable risk assessment and decision support tool for medical system design and mission planning

    The Integrated Medical Model: A Probabilistic Simulation Model for Predicting In-Flight Medical Risks

    Get PDF
    The Integrated Medical Model (IMM) is a probabilistic model that uses simulation to predict mission medical risk. Given a specific mission and crew scenario, medical events are simulated using Monte Carlo methodology to provide estimates of resource utilization, probability of evacuation, probability of loss of crew, and the amount of mission time lost due to illness. Mission and crew scenarios are defined by mission length, extravehicular activity (EVA) schedule, and crew characteristics including: sex, coronary artery calcium score, contacts, dental crowns, history of abdominal surgery, and EVA eligibility. The Integrated Medical Evidence Database (iMED) houses the model inputs for one hundred medical conditions using in-flight, analog, and terrestrial medical data. Inputs include incidence, event durations, resource utilization, and crew functional impairment. Severity of conditions is addressed by defining statistical distributions on the dichotomized best and worst-case scenarios for each condition. The outcome distributions for conditions are bounded by the treatment extremes of the fully treated scenario in which all required resources are available and the untreated scenario in which no required resources are available. Upon occurrence of a simulated medical event, treatment availability is assessed, and outcomes are generated depending on the status of the affected crewmember at the time of onset, including any pre-existing functional impairments or ongoing treatment of concurrent conditions. The main IMM outcomes, including probability of evacuation and loss of crew life, time lost due to medical events, and resource utilization, are useful in informing mission planning decisions. To date, the IMM has been used to assess mission-specific risks with and without certain crewmember characteristics, to determine the impact of eliminating certain resources from the mission medical kit, and to design medical kits that maximally benefit crew health while meeting mass and volume constraints

    Integration of an Evidence Base into a Probabilistic Risk Assessment Model. The Integrated Medical Model Database: An Organized Evidence Base for Assessing In-Flight Crew Health Risk and System Design

    Get PDF
    This slide presentation reviews the Integrated Medical Model (IMM) database, which is an organized evidence base for assessing in-flight crew health risk. The database is a relational database accessible to many people. The database quantifies the model inputs by a ranking based on the highest value of the data as Level of Evidence (LOE) and the quality of evidence (QOE) score that provides an assessment of the evidence base for each medical condition. The IMM evidence base has already been able to provide invaluable information for designers, and for other uses
    corecore