9 research outputs found

    Induction of Stable Drug Resistance in Human Breast Cancer Cells Using a Combinatorial Zinc Finger Transcription Factor Library

    Get PDF
    Combinatorial libraries of artificial zinc-finger transcription factors (ZF-TFs) provide a robust tool for inducing and understanding various functional components of the cancer phenotype. Herein, we utilized combinatorial ZF-TF library technology to better understand how breast cancer cells acquire resistance to fulvestrant, a clinically important anti-endocrine therapeutic agent. From a diverse collection of nearly 400,000 different ZF-TFs, we isolated six ZF-TF library members capable of inducing stable, long-term anti-endocrine drug-resistance in two independent estrogen receptor-positive breast cancer cell lines. Comparative gene expression profile analysis of the six different ZF-TF-transduced breast cancer cell lines revealed five distinct clusters of differentially expressed genes. One cluster was shared among all 6 ZF-TF-transduced cell lines and therefore constituted a common fulvestrant-resistant gene expression signature. Pathway enrichment-analysis of this common fulvestrant resistant signature also revealed significant overlap with gene sets associated with an estrogen receptor-negative-like state and with gene sets associated with drug resistance to different classes of breast cancer anti-endocrine therapeutic agents. Enrichment-analysis of the four remaining unique gene clusters revealed overlap with myb-regulated genes. Finally, we also demonstrated that the common fulvestrant-resistant signature is associated with poor prognosis by interrogating five independent, publicly available human breast cancer gene expression datasets. Our results demonstrate that artificial ZF-TF libraries can be used successfully to induce stable drug-resistance in human cancer cell lines and to identify a gene expression signature that is associated with a clinically relevant drug-resistance phenotype

    Cell Migration Is Regulated by Platelet-Derived Growth Factor Receptor Endocytosis▿ †

    No full text
    Cell migration requires spatial and temporal processes that detect and transfer extracellular stimuli into intracellular signals. The platelet-derived growth factor (PDGF) receptor is a cell surface receptor on fibroblasts that regulates proliferation and chemotaxis in response to PDGF. How the PDGF signal is transmitted accurately through the receptor into cells is an unresolved question. Here, we report a new intracellular signaling pathway by which DOCK4, a Rac1 guanine exchange factor, and Dynamin regulate cell migration by PDGF receptor endocytosis. We showed by a series of biochemical and microscopy techniques that Grb2 serves as an adaptor protein in the formation of a ternary complex between the PDGF receptor, DOCK4, and Dynamin, which is formed at the leading edge of cells. We found that this ternary complex regulates PDGF-dependent cell migration by promoting PDGF receptor endocytosis and Rac1 activation at the cell membrane. This study revealed a new mechanism by which cell migration is regulated by PDGF receptor endocytosis
    corecore