38 research outputs found

    A Case of Radiation Fibrosis Appearing as Mass-Like Consolidation after SBRT with Elevation of Serum CEA

    Get PDF
    We report a case of radiation fibrosis appearing as mass-like consolidation, which was difficult to distinguish from local recurrence. A 72-year-old woman was diagnosed as having primary lung cancer (cT1N0M0 stage IA) in the right upper lobe and was treated with SBRT of 48 Gy in 4 fractions. After 12 months, mass-like consolidation appeared around the irradiated area, and after 13 months, it had increased in size. FDG-PET revealed high uptake (SUV max = 5.61) for the consolidation. CT-guided biopsy was performed, but we could not confirm the diagnosis. Considering her poor respiratory function and her age, short-interval follow-up was performed. After 15 months, the consolidation enlarged at the dorsal side, and carcinoembryonic antigen (CEA) became elevated (14.6 ng/mL). Serum KL-6 (436 U/mL) and SP-D (204 ng/mL) were also elevated. However, after 16 months, serum CEA slightly decreased. The consolidation gradually retracted on follow-up CT images. CEA, KL-6, and SP-D were also decreased by degrees. After 40 months, there is no evidence of local recurrence

    Advanced olfactory neuroblastoma treated with combined conventional and hypofractionated stereotactic radiotherapy

    No full text
    Three patients with olfactory neuroblastoma (ONB) of the nasal and/or paranasal cavity were treated with a combination of conventional radiotherapy (RT) and hypofractionated stereotactic radiation therapy (SRT). Radiation doses of 30 to 50 Gy were delivered in 12 to 25 fractions using conventional RT, and then an additional 20 to 25 Gy was delivered in 5 fractions using SRT. Follow-up time was 42, 53, 65 months, three patients were alive, and local control was obtained in all, complete response (CR) in 2 and partial response (PR) in 1. Two patients had recurrence out of the radiation field and received salvage therapy. According to the Radiation Therapy Oncology Group (RTOG) acute/late radiation morbidity scoring criteria, there were no adverse effects of grade 3 or higher. The combined treatment with conventional RT and hypofractionated SRT achieved excellent local control without serious adverse effects

    Advanced olfactory neuroblastoma treated with combined conventional and hypofractionated stereotactic radiotherapy

    No full text
    Three patients with olfactory neuroblastoma (ONB) of the nasal and/or paranasal cavity were treated with a combination of conventional radiotherapy (RT) and hypofractionated stereotactic radiation therapy (SRT). Radiation doses of 30 to 50 Gy were delivered in 12 to 25 fractions using conventional RT, and then an additional 20 to 25 Gy was delivered in 5 fractions using SRT. Follow-up time was 42, 53, 65 months, three patients were alive, and local control was obtained in all, complete response (CR) in 2 and partial response (PR) in 1. Two patients had recurrence out of the radiation field and received salvage therapy. According to the Radiation Therapy Oncology Group (RTOG) acute/late radiation morbidity scoring criteria, there were no adverse effects of grade 3 or higher. The combined treatment with conventional RT and hypofractionated SRT achieved excellent local control without serious adverse effects

    Advanced olfactory neuroblastoma treated with combined conventional and hypofractionated stereotactic radiotherapy

    No full text
    Three patients with olfactory neuroblastoma (ONB) of the nasal and/or paranasal cavity were treated with a combination of conventional radiotherapy (RT) and hypofractionated stereotactic radiation therapy (SRT). Radiation doses of 30 to 50 Gy were delivered in 12 to 25 fractions using conventional RT, and then an additional 20 to 25 Gy was delivered in 5 fractions using SRT. Follow-up time was 42, 53, 65 months, three patients were alive, and local control was obtained in all, complete response (CR) in 2 and partial response (PR) in 1. Two patients had recurrence out of the radiation field and received salvage therapy. According to the Radiation Therapy Oncology Group (RTOG) acute/late radiation morbidity scoring criteria, there were no adverse effects of grade 3 or higher. The combined treatment with conventional RT and hypofractionated SRT achieved excellent local control without serious adverse effects

    Additional radiotherapy following endoscopic submucosal dissection for T1a-MM/T1b-SM esophageal squamous cell carcinoma improves locoregional control

    No full text
    Abstract Background Endoscopic submucosal dissection (ESD) can be used as a less invasive treatment option for superficial esophageal cancer involving the muscularis mucosae (T1a-MM) or upper third of the submucosa (T1b-SM1). Additional treatment after ESD is needed to prevent lymph node metastasis. However, the efficacy of radiotherapy following ESD has not been well evaluated. Moreover, the clinical outcomes of patients with large mucosal defects of the esophagus who received radiotherapy after ESD have not been reported. This study aimed to clarify the efficacy of additional radiotherapy following ESD for esophageal squamous cell cancer involving T1a-MM or T1b-SM1. Methods We analyzed twenty-seven patients with pathologically confirmed T1a-MM or T1b-SM1 esophageal squamous cell cancer treated by ESD. Thirteen patients received additional radiotherapy (RT group), and the remaining patients did not (non-RT group). Locoregional control (LRC), overall survival, cause-specific survival, and adverse events including treatment-related esophageal strictures were evaluated. Results The three-year LRC was significantly better for the RT than the non-RT group (100% vs. 57.8%, respectively; p = 0.022). Chemotherapy following ESD did not improve LRC. Multivariate analysis showed that radiotherapy was an independent prognostic factor for better LRC (p = 0.0022). Contrary to the results in LRC, overall and cause-specific survival were not significantly different between the RT and non-RT groups. A subgroup analysis of patients with mucosal defects involving ≥ 3/4 of the esophageal circumference after ESD showed that LRC of the RT group was better than that of the non-RT group (p = 0.049). Treatment-related esophageal strictures were observed in 2 of 6 patients in the RT group with large mucosal defects after ESD. No patients with mucosal defects involving less than 3/4 of the circumference after ESD developed treatment-related strictures. Conclusions Radiotherapy after ESD contributed to better LRC in esophageal squamous cell cancer involving pT1a-MM and pT1b-SM1. Esophageal strictures were observed in some patients with large mucosal defects after ESD. Despite leading to better LRC, radiotherapy after ESD should be undertaken after careful consideration for patients with large mucosal defects after ESD
    corecore