6 research outputs found

    Effect of indium doping on the electrical and structural properties of TiO2 thin films used in MOS devices

    Get PDF
    We investigated the effect of Indium (In) doping on the structural and electrical properties of Ti/Au/ TiO2:In/n-Si metal-oxide-semiconductor (MOS) devices. Sputtering grown TiO2 thin films on Si substrate were doped using two In-films with 15 nm and 50 nm thicknesses leading to two structures named Low Indium Doped (LID) sample and High Indium Doped (HID) sample, respectively. XRD analysis shows no diffraction pattern related to Indium indicating that In has been incorporated into the TiO2 lattice. Current-Voltage (I-V) characteristics show that rectification ratio at 2V is higher for HID sample than for LID sample. Evaluated barrier height, ϕB0 , decreased while the ideality factor, n, increased with decreasing temperature. Such behavior is ascribed to barrier inhomogeneity that was assumed to have a Gaussian Distribution (GD) of barrier heights at interface. Evidence of such GD was confirmed by plotting ϕB0versus n. High value of mean barrier ϕ̅B0 and lower value of standard deviation (σ) of HID structure are due to indium doping which increases the barrier homogeneities. Finally, estimated Richardson constants A* are in good agreement with theoretic values (112 A/cm2K2), particularly, for the HID structure

    Pollutant Dispersion Modeling in Natural Streams Using the Transmission Line Matrix Method

    No full text
    Numerical modeling has become an indispensable tool for solving various physical problems. In this context, we present a model of pollutant dispersion in natural streams for the far field case where dispersion is considered longitudinal and one-dimensional in the flow direction. The Transmission Line Matrix (TLM), which has earned a reputation as powerful and efficient numerical method, is used. The presented one-dimensional TLM model requires a minimum input data and provides a significant gain in computing time. To validate our model, the results are compared with observations and experimental data from the river Severn (UK). The results show a good agreement with experimental data. The model can be used to predict the spatiotemporal evolution of a pollutant in natural streams for effective and rapid decision-making in a case of emergency, such as accidental discharges in a stream with a dynamic similar to that of the river Severn (UK)
    corecore