2 research outputs found

    Optical and structural properties of lithium sodium borate glasses doped Dy3+ ions

    Get PDF
    Absorption and emission spectra of lithium sodium borate glass doped with different concentrations of Dy3+ have been reported. The concentration of Dy3+ was varied from 0.3 to 1.3 mol%. The amorphous nature of the prepared samples was confirmed by the X-ray Diffraction (XRD). Fourier transforms infrared (FTIR) spectra, and other significant physical properties (energy band gap, density, ion concentration, molar volume, Polaron radius and inter-nuclear distance) have been analyzed in the light of the different oxidation states of the co-dopant ions. The absorption spectrum showed nine peaks with hypersensitive transition corresponding to 6F11/2 + 6H9/2 at 1256 nm. As a result of 380 nm excitation wavelength, the luminescence spectra showed two characteristic bands at 479 nm and 587 nm. These absorption bands were attributed to 6P15/2 → 6H15/2 and 6P15/2 → 6H13/2 transitions of trivalent Dy3+ ions. The current study indicates that Dy doped lithium sodium borate glasses are attractive for solid-state laser applications

    Physical and optical properties of Li2O-MgO-B2O3 doped with Sm3+

    No full text
    Samarium oxide doped lithium magnesium borate glass has been prepared using conventional melting method. The density and molar volume have been calculated and analyzed while their optical properties were studied by measuring the optical absorption and luminescence spectra at room temperature. From the XRD results, since the patterns do not exhibit any diffraction line thus it confirms their amorphous nature. It was found that the density of the glass samples increased and the molar volume decreased with respect to Sm3+ ions content. Meanwhile, the absorption spectra of this study showed four absorption bands with most outstanding peak at 1230 nm (6H5/2–6F7/2). Three emitted spectra transition were observed in this study which are 4G5/2–6H5/2 (blue), 4G5/2–6H9/2 (green), and 4G5/2–6H11/2(yellowish green). A great enhancement in the PL peaks at green region are observed particularly with the 0.5 mol% concentration, which may attribute to the energy transfer from Mg2+ to the trivalent ions of samarium oxide. Beyond the optimum concentration an opposite effect was remarked. This dwindling is attributed to the concentration quenching phenomenon. The current results agreed with other systematic studies that Sm3+ doped with lithium magnesium borate glasses are attractive solid-state laser materials for generation of various visible lights
    corecore