13 research outputs found

    Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties

    Get PDF
    In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers-acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process

    Surface modification of PES hollow fiber membranes using iron oxide particles for water treatment: does particle size really matter?

    Get PDF
    Factors such as particle type and its loading have been previously studied in tailoring the efficiency of particles-modified polymeric membranes for water treatment. However, the role of particle sizes in membrane modification is often overlooked. Thus, in this work, two commercial iron oxide (Fe3O4) particles (i.e., 50-100 nm and <5 μm) were separately incorporated into 20 wt% polyethersulfone (PES) dope solution via blending method followed by dry/wet spinning process to produce hollow fiber membranes. Subsequently, a series of analytical instruments and filtration assessment to study the impacts of Fe3O4 particle size on membrane properties. Results revealed that the addition of smaller Fe3O4 particles into PES solution produced membrane with better hydrophilicity (contact angle: 75.77°) and consequently higher pure water flux (PWF) (110.42 L/m2.h.bar) compared to the pristine PES membrane (82.60 L/m2.h.bar) and the membrane with larger Fe3O4 particles (91.54 L/m2.h.bar). This is due to the better dispersion of smaller particles in the solvent, which led to improved particle distribution on the PES membrane surface. Most importantly, the membrane modified by smaller particles displayed the best separation performance by rejecting 80.43% bovine serum albumin (BSA), and exhibited the highest antifouling properties by recovering 86.03% of its flux after tested with foulant-contained solution. As a comparison, the PES membrane with larger particles only showed 77.65% BSA rejection and 75.23% flux recovery rate

    Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties

    Get PDF
    In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers-acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process

    A review of commercial developments and recent laboratory research of dialyzers and membranes for hemodialysis application

    Get PDF
    Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow sim-ulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients

    Polysulfone hemodialysis membrane incorporated with Fe2O3 for enhanced removal of middle molecular weight uremic toxin

    Get PDF
    Removing middle molecular weight uremic toxin remains as one of the most challenging tasks in hemodialysis. Hence, in this study a high performance polysulfone (PSf) hemodialysis membrane was developed by incorporating iron oxide (Fe2O3) nanoparticles. The PSf/Fe2O3 hemodialysis membrane and pristine PSf membrane were prepared via dry-wet spinning process. The membranes were characterized by scanning electron microscopy, water contact angle, average pore size, and porosity measurements. The biocompatibility profiles of the membranes were also evaluated in terms of protein adsorption and blood coagulation time. Next, the performance of the membranes was determined by measuring pure water permeability (PWP), bovine serum albumin rejection, and removal of various solutes such as urea and lysozyme. The incorporation of Fe2O3 resulted in significant increment of the PWP from 40.74 L/m2/h/bar to 58.6 L/m2/h/bar, mainly due to the improved water transport properties of the membrane. Moreover, the percent removal of urea and lysozyme was reported to be 75.1% and 35.6%, respectively. PSf/Fe2O3 hemodialysis membrane is proven to have a bright prospect for enhanced blood purification process

    A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application

    No full text
    Dialyzers have been commercially used for hemodialysis application since the 1950s, but progress in improving their efficiencies has never stopped over the decades. This article aims to provide an up-to-date review on the commercial developments and recent laboratory research of dialyzers for hemodialysis application and to discuss the technical aspects of dialyzer development, including hollow fiber membrane materials, dialyzer design, sterilization processes and flow simulation. The technical challenges of dialyzers are also highlighted in this review, which discusses the research areas that need to be prioritized to further improve the properties of dialyzers, such as flux, biocompatibility, flow distribution and urea clearance rate. We hope this review article can provide insights to researchers in developing/designing an ideal dialyzer that can bring the best hemodialysis treatment outcomes to kidney disease patients

    Development of Ultrahigh Permeance Hollow Fiber Membranes via Simple Surface Coating for CO2/CH4 Separation

    No full text
    Most researchers focused on developing highly selective membranes for CO2/CH4 separation, but their developed membranes often suffered from low permeance. In this present work, we aimed to develop an ultrahigh permeance membrane using a simple coating technique to overcome the trade-off between membrane permeance and selectivity. A commercial silicone membrane with superior permeance but low CO2/CH4 selectivity (in the range of 2&ndash;3) was selected as the host for surface modification. Our results revealed that out of the three silane agents tested, only tetraethyl orthosilicate (TEOS) improved the control membrane&rsquo;s permeance and selectivity. This can be due to its short structural chain and better compatibility with the silicone substrate. Further investigation revealed that higher CO2 permeance and selectivity could be attained by coating the membrane with two layers of TEOS. The surface integrity of the TEOS-coated membrane was further improved when an additional polyether block amide (Pebax) layer was established atop the TEOS layer. This additional layer sealed the pin holes of the TEOS layer and enhanced the resultant membrane&rsquo;s performance, achieving CO2/CH4 selectivity of ~19 at CO2 permeance of ~2.3 &times; 105 barrer. This performance placed our developed membrane to surpass the 2008 Robeson Upper Boundary

    Study on the effect of PVP additive on the performance of PSf/PVP ultrafiltration hollow fiber membrane

    No full text
    Asymmetric, porous ultrafiltration polysulfone (PSf) hollow fiber membranes were fabricated based on different compositions of polyvinylpyrrolidone (PVP) additive concentration. The physical structure or morphology of a fabricated membrane is a major concern in determining the efficiency of a dialysis membrane. Different types of membrane morphology will give a different result in terms of membrane permeability and clearance efficiency. The phase inversion spinning technique is suitable in producing ultrafiltation (UF) membrane where the average pore size of the fabricated membrane is in the range of 0.001 – 0.1 μm. However, there are many factors need to be controlled and manipulated during the phase inversion technique. In this study, the effect of the PVP on membrane pore size and performances were analysed. The contact angle was measured to determine the hydrophilicity of the membranes. The hydrophilic polymer is favorable to avoid fouling and to increase membrane biocompatibility. Furthermore, the diameter of the membrane fibers was determined using a scanning electron microscopy (SEM). The effects of different morphologies of the hollow fibers on the performance of the membranes were evaluated by pure water flux and BSA rejection. Both experiments were conducted using permeation flux system. It was found that the finger-like macrovoids in PSf hollow fiber membranes were suppressed by the addition of 8% PVP (Mw of 360 kDa) as the result of a drastic increase in dope solution viscosity. On top of that, the fibers spun with 8% PVP showed a more porous structure which contributes to higher membrane permeability

    Highly adsorptive oxidized starch nanoparticles for efficient urea removal

    No full text
    Portable dialysis is a need to implement daily and nocturnal hemodialysis. To realize portable dialysis, a dialysate regeneration system comprising superior adsorbents is required to regenerate the used dialysate. This study aims to develop a nano-adsorbent, derived from corn starch for urea removal. Oxidized starch nanoparticles (oxy-SNPs) were prepared via liquid phase oxidation, followed by chemical dissolution and non-solvent precipitation. The oxy-SNPs possessed Z-average size of 177.7 nm with carbonyl and carboxyl contents of 0.068 and 0.048 per 100 glucose units, respectively. The urea adsorption achieved the equilibrium after 4 h with 95% removal. The adsorption mechanism fitted Langmuir isotherm while the adsorption kinetics obeyed pseudo-second-order model. This new material has a maximum adsorption capacity of 185.2 mg/g with a rate constant of 0.04 g/mg.h. Moreover, the oxy-SNPs exhibited the urea uptake recovery of 91.6%. Oxy-SNPs can become a promising adsorbent for dialysate regeneration system to remove urea

    Facile modification of polysulfone hollow-fiber membranes via the incorporation of well-dispersed iron oxide nanoparticles for protein purification

    No full text
    Protein existence in wastewater is an important issue in wastewater management because proteins are generally present as contaminants and foulants. Hence, in this study, we focused on designing a polysulfone (PSf) hollow-fiber membrane embedded with hydrophilic iron oxide nanoparticles (IONPs) for protein purification by means of ultrafiltration. Before membrane fabrication, the dispersion stability of the IONPs was enhanced by the addition of a stabilizer, namely, citric acid (CA). Next, PSf–IONP–CA nanocomposite hollow-fiber membranes were prepared via a dry–wet spinning process and then characterized in terms of their hydrophilicity and morphology. Ultrafiltration and adsorption experiments were then conducted with bovine serum albumin as a model protein. The results that an IONP/CA weight ratio of 1:20 contributed to the most stable IONP dispersion. It was also revealed that the membrane incorporated with IONP–CA at a weight ratio of 1:20 exhibited the highest pure water permeability (58.6 L m −2 h −1 bar −1 ) and protein rejection (98.5%) while maintaining a low protein adsorption (3.3 μg/cm 2 ). The addition of well-dispersed IONPs enhanced the separation features of the PSf hollow-fiber membrane for protein purification
    corecore