784 research outputs found

    Riemannian Gaussian distributions on the space of positive-definite quaternion matrices

    Full text link
    Recently, Riemannian Gaussian distributions were defined on spaces of positive-definite real and complex matrices. The present paper extends this definition to the space of positive-definite quaternion matrices. In order to do so, it develops the Riemannian geometry of the space of positive-definite quaternion matrices, which is shown to be a Riemannian symmetric space of non-positive curvature. The paper gives original formulae for the Riemannian metric of this space, its geodesics, and distance function. Then, it develops the theory of Riemannian Gaussian distributions, including the exact expression of their probability density, their sampling algorithm and statistical inference.Comment: 8 pages, submitted to GSI 201

    Decompounding on compact Lie groups

    Full text link
    Noncommutative harmonic analysis is used to solve a nonparametric estimation problem stated in terms of compound Poisson processes on compact Lie groups. This problem of decompounding is a generalization of a similar classical problem. The proposed solution is based on a char- acteristic function method. The treated problem is important to recent models of the physical inverse problem of multiple scattering.Comment: 26 pages, 3 figures, 25 reference

    Positron emission tomography imaging of endometrial cancer using engineered anti-EMP2 antibody fragments.

    Get PDF
    PurposeAs imaging of the cell surface tetraspan protein epithelial membrane protein-2 (EMP2) expression in malignant tumors may provide important prognostic and predictive diagnostic information, the goal of this study is to determine if antibody fragments to EMP2 may be useful for imaging EMP2 positive tumors.ProceduresThe normal tissue distribution of EMP2 protein expression was evaluated by immunohistochemistry and found to be discretely expressed in both mouse and human tissues. To detect EMP2 in tumors, a recombinant human anti-EMP2 minibody (scFv-hinge-C(H)3 dimer; 80 kDa) was designed to recognize a common epitope in mice and humans and characterized. In human tumor cell lines, the antibody binding induced EMP2 internalization and degradation, prompting the need for a residualizing imaging strategy. Following conjugation to DOTA (1,4,7,10-tetraazacyclododecane-N,N',N',N'″-tetraacetic acid), the minibody was radiolabeled with (64)Cu (t (1/2) = 12.7 h) and evaluated in mice as a positron emission tomography (PET) imaging agent for human EMP2-expressing endometrial tumor xenografts.ResultsThe residualizing agent, (64)Cu-DOTA anti-EMP2 minibody, achieved high uptake in endometrial cancer xenografts overexpressing EMP2 (10.2 ± 2.6, percent injected dose per gram (%ID/g) ± SD) with moderate uptake in wild-type HEC1A tumors (6.0 ± 0.1). In both cases, precise tumor delineation was observed from the PET images. In contrast, low uptake was observed with anti-EMP2 minibodies in EMP2-negative tumors (1.9 ± 0.5).ConclusionsThis new immune-PET agent may be useful for preclinical assessment of anti-EMP2 targeting in vivo. It may also have value for imaging of tumor localization and therapeutic response in patients with EMP2-positive malignancies

    Autonomous Calibration of Single Spin Qubit Operations

    Full text link
    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict and to anticipate the quantum dynamics [1,2], as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a Hadamard gate within the experimental error of 2%. These results manifest a full potential for versatile quantum nanotechnologies.Comment: 9 pages, 5 figure

    Hidden Markov chains and fields with observations in Riemannian manifolds

    Full text link
    Hidden Markov chain, or Markov field, models, with observations in a Euclidean space, play a major role across signal and image processing. The present work provides a statistical framework which can be used to extend these models, along with related, popular algorithms (such as the Baum-Welch algorithm), to the case where the observations lie in a Riemannian manifold. It is motivated by the potential use of hidden Markov chains and fields, with observations in Riemannian manifolds, as models for complex signals and images.Comment: accepted for publication at MTNS 202
    corecore