16 research outputs found

    Anatomical, Biological, and Surgical Features of Basal Ganglia

    Get PDF
    Basal ganglia refers to the deep gray matter masses on the deeply telencephalon and encompasses a group of nuclei and it influence the information in the extrapyramidal system. In human they are related with numerous significant functions controlled by the nervous system. Gross anatomically, it is comprised of different parts as the dorsal striatum that are consisted of the caudate nucleus and putamen and ventral striatum which includes the nucleus accumbens, olfactory tubercle, globus pallidus, substantia nigra, and subthalamic nucleus. Nucleus accumbens, is also associated with reward circuits and has two parts; the nucleus accumbens core and the nucleus accumbens shell. Neurological diseases are characterized through the obvious pathology of the basal ganglia, and there are important findings explaining striatal neurodegeneration on human brain. Some of these diseases are induced by bacterial and/or viral infections. Surgical interference can be one alternative for neuronal disease treatment like Parkinson’s Disease or Thiamine Responsive Basal Ganglia Disease or Wilson’s Disease, respectively in addition to the vascular or tumor surgery within this area. Extensive knowledge on the morphological basis of diseases of the basal ganglia along with motor, behavioral and cognitive symptoms can contribute significantly to the optimization of the diagnosis and later patient’s treatment

    Anatomic Origin and Molecular Genetics in Neuroblastoma

    Get PDF
    Neuroblastoma is considered as the most common extracranial solid tumor occurring during childhood, but takes place rarely after the age of 10 years. The tumors are considered as embryonal tumors that result from the fetal or early postnatal life development and are formed from neural crest-derived cells, and their origination is from the early nerve cells which are called as neuroblasts of sympathetic nervous system. Being heterogeneous in their biological, genetic, and morphological characteristics, tumors which are distinct from other solid tumors due to their biological heterogeneity result in the clinical pattern changes from spontaneous regression to a highly aggressive metastatic disease. Neuroblastoma tumorigenesis is regulated by Myc oncogene, leading to aggressive tumor subset. Many epigenetic factors play crucial role in the disease induction and development, while regulatory effect and outcome result in epigenetic patterns distinguishing neuroectoderm, neural crest, and more mature neural states. Neuroblastoma patients’ clinical management is based on prognostic categories subtracted from studies correlating outcome and clinico-biological variables. Neuroblastoma anatomic boundaries include primarily autonomic nervous system besides other rare locations. Neuroblastoma molecular pathogenesis classifies the tumor according to the different clinical behaviors that are important for the improvement of the patients outcome and overall survival according to the different therapy modalities applied

    Sağlık Bilimlerine Yönelik Anatomi

    No full text
    Sinir Sistemi II- Periferik Sinir Sistemi sayfa 221-237</p

    Blood-based microRNAs as diagnostic biomarkers to discriminate localized prostate cancer from benign prostatic hyperplasia and allow cancer-risk stratification

    No full text
    Prostate cancer (PCa) is the second most diagnosed malignancy, and the leading cause of cancer-associated mortality among males. Prostate-specific antigen (PSA) has long been used for the detection of PCa. However, PSA levels increase in PCa and benign prostatic hyperplasia (BPH), and are associated with a poor disease outcome. Circulating microRNAs (miRNAs) have been determined to be highly stable in the circulation, and could be utilized as biomarkers to improve disease diagnosis and management. In the present study, the effectiveness of four PCa-associated miRNAs in the discrimination of PCa from BPH and the risk-stratification of PCa was assessed. The study included 100 participants: 35 patients with localized PCa, 35 patients with BPH and 30 healthy subjects. Patients with PCa were categorized based on their tumor stage (T), PSA level and Gleason score (GS) into low-(T 1/2, PSA = 8 GS 20 ng/ml or GS Reverse transcription-quantitative polymerase chain reaction was employed to assess the miRNA expression in peripheral blood samples. Significantly reduced expression of miR-15a, miR-126, miR-192 and miR-377 was observed in patients with PCa compared with patients with BPH and healthy subjects. In addition, the expression of the four miRNAs was lower in high-risk PCa patients than in low-risk PCa patients, with miR-126 being the most downregulated. The expression of the four miRNAs was also significantly and independently associated with PCa. Receiver operating characteristic curve analysis revealed a significant ability of the miRNAs to distinguish patients with PCa from those with BPH, patients with PCa from controls and low-risk PCa from high-risk PCa. These data suggested that expression of these miRNAs in the blood circulation may be promising, non-invasive biomarkers for the early detection of localized PCa, and for PCa risk stratification. Further validations of the clinical implementation of these results are warranted in a larger cohort
    corecore