4 research outputs found

    Potentiality of application of the conductometric L-arginine biosensors for the real sample analysis

    No full text
    Aim. To determine an influence of serum components on the L-arginine biosensor sensitivity and to formulate practical recommendations for its reliable analysis. Methods. The L-arginine biosensor comprised arginase and urease co-immobilized by cross-linking. Results. The biosensor specificity was investigated based on a series of representative studies (namely, through urea determination in the serum; inhibitory effect studies of mercury ions; high temperature treatment of sensors; studying the biosensor sensitivity to the serum treated by enzymes, and selectivity studies). It was found that the response of the biosensor to the serum injections was determined by high sensitivity of the L-arginine biosensor toward not only to L-arginine but also toward two other basic amino acids (L-lysine and L-histidine). Conclusions. A detailed procedure of optimization of the conductometric biosensor for L-arginine determination in blood serum has been proposed. Keywords: L-arginine, conductometric biosensors, serum, optimization procedure.Мета. Визначити вплив компонентів сироватки крові на чутливість біосенсора при виявленні L-аргініну та сформулювати практичні рекомендації для забезпечення її надійного аналізу. Методи. Біосенсор для визначення L-аргініну містить аргіназу і уреазу, коіммобілізовані методом поперечного зшивання. Результати. Специфічність біосенсора вивчали на основі низки показників – вмісту сечовини у сироватці; інгібувального впливу іонів ртуті; високотемпературної обробки біосенсорів; чутливості біосенсора до сироватки крові, обробленої ліофілізованими препаратами ферментів, та селективності біосенсора. Встановлено, що відгук біосенсора на внесення сироватки зумовлений високою чутливістю біосенсора ще до двох, крім L-аргініну, основних амінокислот (L-лізину та L-гістидину). Висновки. Запропоновано детальну процедуру оптимізації кондуктометричного біосенсора для визначення L-аргініну у сироватці крові. Ключові слова: L-аргінін, кондуктометричні біосенсори, сироватка крові, процедура оптимізації.Цель. Определить влияние компонентов сыворотки крови на чувствительность биосенсора для выявления L-аргинина и сформулировать практические рекомендации для обеспечения ее надежного анализа. Методы. Биосенсор для определения L-аргинина содержит аргиназу и уреазу, ко-иммобилизованные методом поперечной сшивки. Результаты. Специфичность биосенсора изучали на основе серии показателей – содержания мочевины в сыворотке; ингибирующего эффекта ионов ртути; высокотемпературной обработки биосенсоров; чувствительности биосенсора к сыворотке крови, обработанной лиофилизованными препаратами ферментов, и селективности биосенсора. Установлено, что отклик биосенсора на внесение сыворотки обусловлен высокой чувствительностью биосенсора еще к двум, кроме L-аргинина, основным аминокислотам (L-лизину и L-гистидину). Выводы. Предложена детальная процедура оптимизации кондуктометрического биосенсора для определения L-аргинина в сыворотке крови. Ключевые слова: L-аргинин, кондуктометрические биосенсоры, сыворотка крови, процедура оптимизации

    Biosensors. A quarter of a century of R&D experience

    No full text
    The paper is a review of the researches of Biomolecular Electronics Laboratory concerning the development of biosensors based on electrochemical transducers (amperometric and conductometric electrodes, potentiometric pH-sensitive field effect transistors) and different biorecognition molecules (enzymes, cells, antibodies), biomimics (molecularly imprinted polymers), as sensitive elements for direct analysis of substrates or inhibitory analysis of toxicants. Highly specific, sensitive, simple, fast and cheap detection of different substances renders them as promising tools for needs of health care, environmental control, biotechnology, agriculture and food industries. Diverse biosensor formats for direct determination of different analytes and inhibitory enzyme analysis of a number of toxins have been designed and developed. Improvement of their analytical characteristics may be achieved by using differential mode of measurement, negatively or positively charged additional semipermeable membranes, nanomaterials of different origin, genetically modified enzymes. These approaches have been aimed at increasing the sensitivity, selectivity and stability of the biosensors and extending their dynamic ranges. During the last 25 years more than 50 laboratory prototypes of biosensor systems based on mono- and multibiosensors for direct determination of a variety of metabolites and inhibitory analysis of different toxic substances were created. Some of them were tested in real samples analysis. The advantages and disadvantages of the biosensors developed are discussed. The possibility of their practical application is considered.Представлено огляд виконаних у лабораторії біомолекулярної электроніки досліджень в області розробки біосенсорів на основі електрохімічних перетворювачів (амперо- і кондуктометричні електроди, потеціометричні рН-чутливі польові транзистори) і різних біорозпізнавальних молекул (ферменти, клітини, антитіла), біоміміків або синтетичних мембран, включаючи матричні полімери, як чутливих елементів для прямого аналізу субстратів або інгібіторного аналізу токсинів. Завдяки високій специфічності і чутливості, простоті та низькій вартості визначення різних речовин біосенсори є перспективними приладами для потреб охорони здоров’я, контролю довкілля, біотехнології, сільського господарства і харчової промисловості. Розроблено й досліджено біосенсори для прямого визначення низки аналітів та інгібіторного аналізу різних токсичних речовин. Поліпшення їхніх аналітичних характеристик можна досягти за рахунок застосування диференційного режиму вимірювань, негативно або позитивно заряджених допоміжних напівпроникних мембран, наноматеріалів різного походження, генетично модифікованих ферментів тощо. Використання цих підходів зробить можливим підвищити чутливість, селективність і стабільність біосенсорів, а також розширити динамічний діапазон вимірювань. Упродовж останніх 25 років виготовлено більш як 50 лабораторних прототипів біосенсорних систем на основі моно- і мультибіосенсорів для прямого визначення різноманітних метаболітів та інгібіторного аналізу токсикантів. Деякі з них випробувано за умов аналізу реальних зразків. В огляді обговорено переваги і недоліки розроблених біосенсорів та розглянуто можливості їхнього практичного застосування.Представлен обзор выполненных в лаборатории биомолекулярной электроники исследований в области разработки биосенсоров на основе электрохимических преобразователей (амперо- и кондуктометрические электроды, потециометрические рН-чувствительные полевые транзисторы) и различных биораспознающих молекул (ферменты, клетки, антитела), биомимиков или синтетических мембран, в том числе матричных полимеров, в качестве чувствительных элементов для прямого анализа субстратов или ингибиторного анализа токсинов. Благодаря высокой специфичности и чувствительности, простоте и дешевизне оп- ределения различных веществ биосенсоры представляют собой перспективный инструментарий для потребностей здравоохранения, контроля окружающей среды, биотехнологии, сельского хозяйства и пищевой промышленности. Разработаны и исследованы биосенсоры для прямого определения ряда аналитов и ингибиторного ферментного анализа различных токсичных веществ. Улучшения их аналитических характеристик можно достичь за счет применения дифференциального режима измерений, негативно или позитивно заряженных дополнительных полупроницаемых мембран, наноматериалов разного происхождения, генетически модифицированных ферментов и др. Эти подходы дают возможность повысить чувствительность, селективность и стабильность биосенсоров, расширить их динамический диапазон измерений. В течение последних 25 лет изготовлено более 50 лабораторных прототипов биосенсорных систем на основе моно- и мультибиосенсоров для прямого определения разнообразных ме- таболитов и ингибиторного анализа различных токсикантов. Некоторые из них исследованы в условиях анализа реальных об- разцов. В обзоре обсуждаются достоинства и недостатки разра- ботанных биосенсоров. Рассматривается возможность их прак- тического использования

    Biosensors. A quarter of a century of R&D experience

    No full text
    The paper is a review of the researches of Biomolecular Electronics Laboratory concerning the development of biosensors based on electrochemical transducers (amperometric and conductometric electrodes, potentiometric pH-sensitive field effect transistors) and different biorecognition molecules (enzymes, cells, antibodies), biomimics (molecularly imprinted polymers), as sensitive elements for direct analysis of substrates or inhibitory analysis of toxicants. Highly specific, sensitive, simple, fast and cheap detection of different substances renders them as promising tools for needs of health care, environmental control, biotechnology, agriculture and food industries. Diverse biosensor formats for direct determination of different analytes and inhibitory enzyme analysis of a number of toxins have been designed and developed. Improvement of their analytical characteristics may be achieved by using differential mode of measurement, negatively or positively charged additional semipermeable membranes, nanomaterials of different origin, genetically modified enzymes. These approaches have been aimed at increasing the sensitivity, selectivity and stability of the biosensors and extending their dynamic ranges. During the last 25 years more than 50 laboratory prototypes of biosensor systems based on mono- and multibiosensors for direct determination of a variety of metabolites and inhibitory analysis of different toxic substances were created. Some of them were tested in real samples analysis. The advantages and disadvantages of the biosensors developed are discussed. The possibility of their practical application is considered.Представлено огляд виконаних у лабораторії біомолекулярної электроніки досліджень в області розробки біосенсорів на основі електрохімічних перетворювачів (амперо- і кондуктометричні електроди, потеціометричні рН-чутливі польові транзистори) і різних біорозпізнавальних молекул (ферменти, клітини, антитіла), біоміміків або синтетичних мембран, включаючи матричні полімери, як чутливих елементів для прямого аналізу субстратів або інгібіторного аналізу токсинів. Завдяки високій специфічності і чутливості, простоті та низькій вартості визначення різних речовин біосенсори є перспективними приладами для потреб охорони здоров’я, контролю довкілля, біотехнології, сільського господарства і харчової промисловості. Розроблено й досліджено біосенсори для прямого визначення низки аналітів та інгібіторного аналізу різних токсичних речовин. Поліпшення їхніх аналітичних характеристик можна досягти за рахунок застосування диференційного режиму вимірювань, негативно або позитивно заряджених допоміжних напівпроникних мембран, наноматеріалів різного походження, генетично модифікованих ферментів тощо. Використання цих підходів зробить можливим підвищити чутливість, селективність і стабільність біосенсорів, а також розширити динамічний діапазон вимірювань. Упродовж останніх 25 років виготовлено більш як 50 лабораторних прототипів біосенсорних систем на основі моно- і мультибіосенсорів для прямого визначення різноманітних метаболітів та інгібіторного аналізу токсикантів. Деякі з них випробувано за умов аналізу реальних зразків. В огляді обговорено переваги і недоліки розроблених біосенсорів та розглянуто можливості їхнього практичного застосування.Представлен обзор выполненных в лаборатории биомолекулярной электроники исследований в области разработки биосенсоров на основе электрохимических преобразователей (амперо- и кондуктометрические электроды, потециометрические рН-чувствительные полевые транзисторы) и различных биораспознающих молекул (ферменты, клетки, антитела), биомимиков или синтетических мембран, в том числе матричных полимеров, в качестве чувствительных элементов для прямого анализа субстратов или ингибиторного анализа токсинов. Благодаря высокой специфичности и чувствительности, простоте и дешевизне оп- ределения различных веществ биосенсоры представляют собой перспективный инструментарий для потребностей здравоохранения, контроля окружающей среды, биотехнологии, сельского хозяйства и пищевой промышленности. Разработаны и исследованы биосенсоры для прямого определения ряда аналитов и ингибиторного ферментного анализа различных токсичных веществ. Улучшения их аналитических характеристик можно достичь за счет применения дифференциального режима измерений, негативно или позитивно заряженных дополнительных полупроницаемых мембран, наноматериалов разного происхождения, генетически модифицированных ферментов и др. Эти подходы дают возможность повысить чувствительность, селективность и стабильность биосенсоров, расширить их динамический диапазон измерений. В течение последних 25 лет изготовлено более 50 лабораторных прототипов биосенсорных систем на основе моно- и мультибиосенсоров для прямого определения разнообразных ме- таболитов и ингибиторного анализа различных токсикантов. Некоторые из них исследованы в условиях анализа реальных об- разцов. В обзоре обсуждаются достоинства и недостатки разра- ботанных биосенсоров. Рассматривается возможность их прак- тического использования
    corecore