25 research outputs found

    Apolipoprotein M Gene (APOM) Polymorphism Modifies Metabolic and Disease Traits in Type 2 Diabetes

    Get PDF
    This study aimed at substantiating the associations of the apolipoproein M gene (APOM) with type 2 diabetes (T2D) as well as with metabolic traits in Hong Kong Chinese. In addition, APOM gene function was further characterized to elucidate its activity in cholesterol metabolism. Seventeen APOM SNPs documented in the NCBI database were genotyped. Five SNPs were confirmed in our study cohort of 1234 T2D and 606 control participants. Three of the five SNPs rs707921(C+1871A), rs707922(G+1837T) and rs805264(G+203A) were in linkage disequilibrium (LD). We chose rs707922 to tag this LD region for down stream association analyses and characterized the function of this SNP at molecular level. No association between APOM and T2D susceptibility was detected in our Hong Kong Chinese cohort. Interestingly, the C allele of rs805297 was significantly associated with T2D duration of longer than 10 years (OR = 1.245, p = 0.015). The rs707922 TT genotype was significantly associated with elevated plasma total- and LDL- cholesterol levels (p = 0.006 and p = 0.009, respectively) in T2D patients. Molecular analyses of rs707922 lead to the discoveries of a novel transcript APOM5 as well as the cryptic nature of exon 5 of the gene. Ectopic expression of APOM5 transcript confirmed rs707922 allele-dependent activity of the transcript in modifying cholesterol homeostasis in vitro. In conclusion, the results here did not support APOM as a T2D susceptibility gene in Hong Kong Chinese. However, in T2D patients, a subset of APOM SNPs was associated with disease duration and metabolic traits. Further molecular analysis proved the functional activity of rs707922 in APOM expression and in regulation of cellular cholesterol content

    Milk Consumption Across Life Periods in Relation to Lower Risk of Nasopharyngeal Carcinoma: A Multicentre Case-Control Study

    Get PDF
    Background: The much higher incidence of nasopharyngeal carcinoma (NPC) in men suggests sex hormones as a risk factor, and dairy products contain measurable amounts of steroid hormones. Milk consumption has greatly increased in endemic regions of NPC. We investigated the association between NPC and milk consumption across life periods in Hong Kong.Methods: A multicentre case-control study included 815 histologically confirmed NPC incident cases and 1,502 controls who were frequency-matched on age and sex at five major hospitals in Hong Kong in 2014–2017. Odds ratios (ORs) of NPC (cases vs. controls) for milk consumption at different life periods were estimated by unconditional logistic regression, adjusting for sex, age, socioeconomic status score, smoking and alcohol drinking status, exposure to occupational hazards, family history of cancer, IgA against Epstein-Barr virus viral capsid antigen, and total energy intake.Results: Compared with abstainers, lower risks of NPC were consistently observed in regular users (consuming ≥5 glasses of milk [fresh and powdered combined] per month) across four life periods of age 6–12 (adjusted OR 0.74, 95% CI 0.54–0.86), 13–18 (0.68, 0.55–0.84), 19–30 (0.68, 0.55–0.84), and 10 years before recruitment (0.72, 0.59–0.87). Long-term average milk consumption of ≤2.5, >2.5, and ≤12.5, >12.5 glasses per month yielded adjusted OR (95% CI) of 1.00 (0.80–1.26), 0.98 (0.81–1.18), 0.95 (0.76–1.18), and 0.55 (0.43–0.70), respectively (all P-values for trend < 0.05).Conclusion: Consumption of milk across life periods was associated with lower risks of NPC. If confirmed to be causal, this has important implications for dairy product consumption and prevention of NPC

    Genome-wide analysis of DNA methylation associated with HIV infection based on a pair of monozygotic twins

    Get PDF
    Alteration of DNA methylation in mammalian cells could be elicited by many factors, including viral infections [1]. HIV has shown the ability to interact with host cellular factors to change the methylation status of some genes [2–4]. However, the change of the DNA methylation associated with HIV infection based on the whole genome has not been well illustrated. In this study, a unique pair of monozygotic twins was recruited: one of the twins was infected with HIV without further anti-retroviral therapy while the other one was healthy, which could be considered as a relatively ideal model for profiling the alterations of DNA methylation associated with HIV infection. Therefore, using methylated DNA immunoprecipitation–microarray method (MeDIP–microarray), we found the increased DNA methylation level in peripheral blood mononuclear cells from HIV infected twin compared to her normal sibling. Moreover, several distinguished differential methylation regions (DMRs) in HIV infected twin worth further study. The raw data has been deposited in Gene Expression Omnibus (GEO) datasets with reference number GSE68028

    Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique

    No full text
    This paper describes the work that was carried out on the design for intelligent wearable garment with transcutaneous electrical nerve stimulation (TENS) function from a knitwear design perspective. It is perceived that good design is essential for the development of textile-related products for medical function. The knitwear technique, garment design skill, Chinese acupuncture therapeutic method and TENS technology were integrated interactively in an intelligent TENS garment. The garment was observed to have more advantages than ones incorporating TENS device, such as it readily, quickly and easily targeted the back of the body; it was more flexible in the treatment by accommodating different numbers and locations of acupuncture points; it was light, washable, flexible, inexpensive and relatively simple to manufacture. This work aimed to develop a knitwear design based on intarsia knitting technique by using proposed textile electrode and conductive yarn to create a novel therapeutic method for healthcare through dressing. Experimental results revealed that the knitwear could achieve better results in performance than those incorporating the TENS therapeutic method.Institute of Textiles and ClothingDepartment of Electronic and Information EngineeringSchool of Nursin

    Organism-Specific rRNA Capture System for Application in Next-Generation Sequencing

    No full text
    <div><p>RNA-sequencing is a powerful tool in studying RNomics. However, the highly abundance of ribosomal RNAs (rRNA) and transfer RNA (tRNA) have predominated in the sequencing reads, thereby hindering the study of lowly expressed genes. Therefore, rRNA depletion prior to sequencing is often performed in order to preserve the subtle alteration in gene expression especially those at relatively low expression levels. One of the commercially available methods is to use DNA or RNA probes to hybridize to the target RNAs. However, there is always a concern with the non-specific binding and unintended removal of messenger RNA (mRNA) when the same set of probes is applied to different organisms. The degree of such unintended mRNA removal varies among organisms due to organism-specific genomic variation. We developed a computer-based method to design probes to deplete rRNA in an organism-specific manner. Based on the computation results, biotinylated-RNA-probes were produced by <i>in vitro</i> transcription and were used to perform rRNA depletion with subtractive hybridization. We demonstrated that the designed probes of 16S rRNAs and 23S rRNAs can efficiently remove rRNAs from <i>Mycobacterium smegmatis</i>. In comparison with a commercial subtractive hybridization-based rRNA removal kit, using organism-specific probes is better in preserving the RNA integrity and abundance. We believe the computer-based design approach can be used as a generic method in preparing RNA of any organisms for next-generation sequencing, particularly for the transcriptome analysis of microbes.</p> </div

    Workflow illustrating the procedures for Organism-Specific Probe Selection and rRNA depletion.

    No full text
    <p><b>A</b>. Workflow of Organism-Specific Probe Selection (OSPS) program. OSPS was used to screen for unique sequences of 16S rRNAs and 23S rRNAs that have no significant similarity to other transcripts in the same organism. <b>B</b>. Overall procedures of rRNA depletion. Sequences for probes were amplified and cloned into an in-house pT1 system, and the RNA probes were which by <i>in </i><i>vitro</i> transcribed with biotinylated UTP and tested for rRNA depletion efficiency. The best probes were selected and combined for further rRNA depletion.</p

    Integrity of mRNA after rRNA depletion was determined by real-time PCR.

    No full text
    <p>The expression level of rRNA and 14 genes of different abundance were measured before and after rRNA depletion using MSMEG_5072 gene as a housekeeping control. Abundance of selected genes and the gene ID were shown. <b>A</b>. Relative fold change of selected mRNA and rRNA after depletion using MICROB<i>Express</i>™ Bacterial mRNA Enrichment. <b>B</b>. Fold change of selected mRNA and rRNA after depletion using probes designed by OSPS.</p
    corecore